

E-Tract project Deliverable 2.1 - Adaptors

1. System concept

1.1. Aim of the system

The design is aimed to create a fully mechanically integrated electric traction system for electrification of minibus and light duty vehicles.

The system shall be embedding high speed motor coupled with multi-ratio innovative three-axes transmission with synchro-meshes and electro-hydraulic actuation for on-line optimization of overall system efficiency and exploitation. The transmission fit in both passenger cars and 4.2 tons applications.

The system is flexible, efficient, cost effective, compact and mechanically simple. Figure 1 summarizes the transmission key points at a glance.

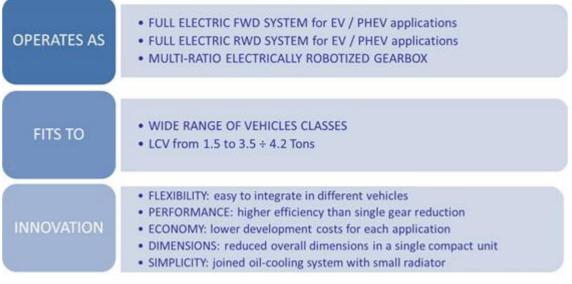


Figure 1 – Transmission key points.

1.1. Mechanical concept

Fulfilling the aim of flexibility leads to the requirements that the system can be supported on the chassis and suspension assembly. Proposed design is depicted in Figure 2-a) where the innovative transmission, consisting in electric motor coupled to gearbox, is directly connected to axle by means of an embedded differential gear-set.

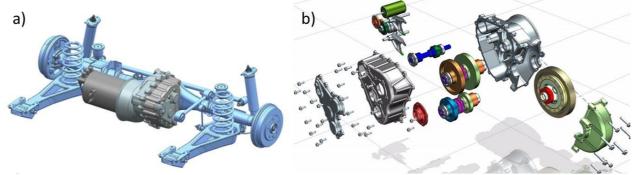


Figure 2 – Installation and parts explosion.

Main gearbox shaft (blue) is coupled with 2 secondary shaft (bronze) which are connected to planetary gear (gold). This solution allows for a sequential gear disposal with an integrated open differential targeting for performance and economy aims. Indeed, provided four gear system ensure fitting the power unit in different applications possibly depopulating some gear ratio. This allows for scale economy and consequently and efficient cost reduction making the system affordable for a business consisting in several different applications whit limited number of pieces for year. Moreover, the system itself can be more efficient considering the possibility of selecting different motor operating point for any given set point required by the driver.

Compared to the original forecast, the fully mechanically integrated electric traction system realized was to be implemented on a Fiat Ducato 2.3 M-JET minibus (14 seats), with a GVW up to 3.5 t, this activity has not yet been completed but will be finished by Mecaprom after the end of the project, as indicated in the recovery plan.

The following figures shows the final layout of the innovative transmission:

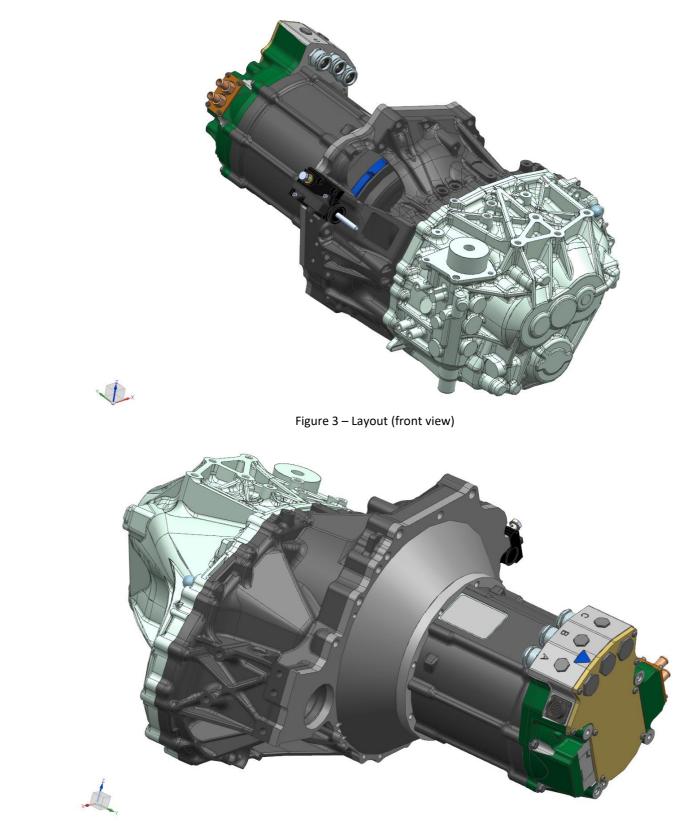
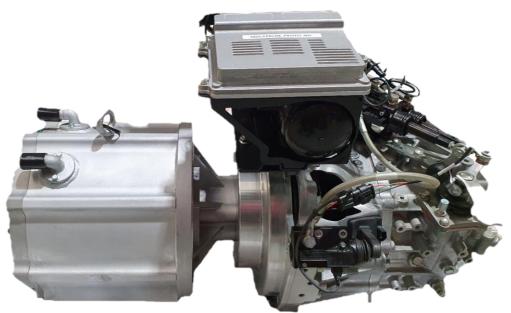
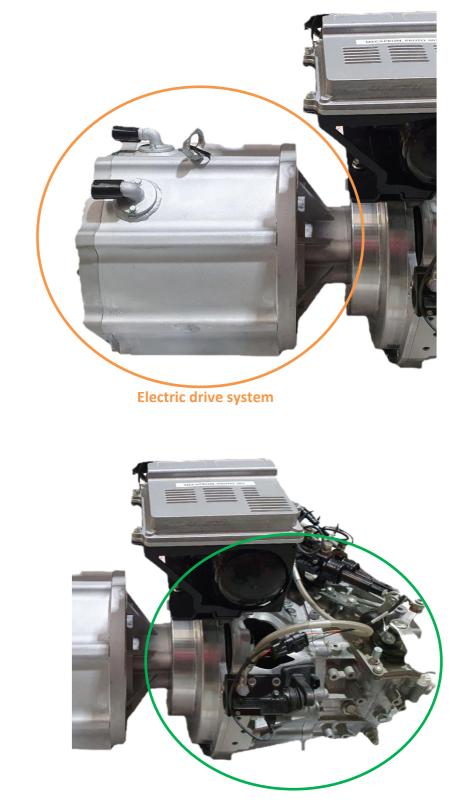
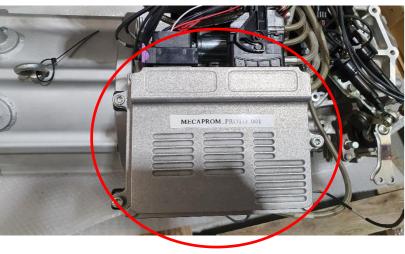


Figure 4 – Layout (rear view)

The following figures shows instead the realization of the integrated electric traction system:

Figure 4 – Integrated electric traction system


Figure 4 – Integrated electric traction system – Lateral view

Transmission system

ECU

In the figures above it is possible see the other main components of the integrated electric traction system:

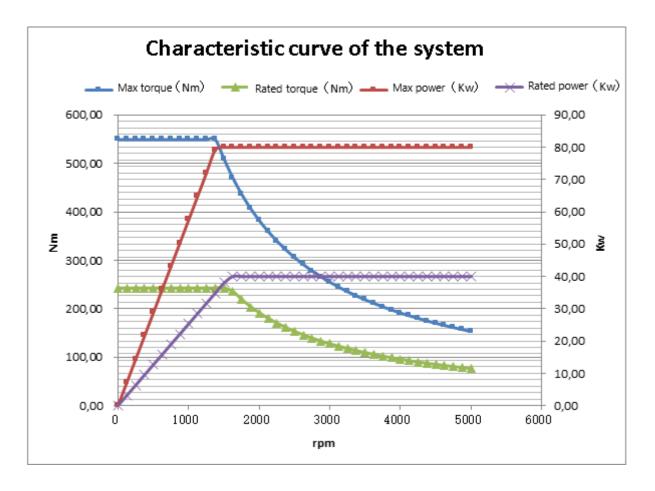
- Electric drive system
- ECU (Electronic Control Unit)

Electric drive system

Electric drive system converts incoming electrical energy into outgoing mechanical energy. Each drive consists of an electric motor and a controller. In this way it is possible to make the motor follow a desired behavior for a predetermined purpose.

At the start of the project, an Italian supplier (Magneti Marelli) was selected, unfortunately, months later, the supplier of the selected motor was not able to guarantee improved performances and parts supply, because of company merge in a bigger worldwide industrial group. In the meantime, the improvement of the requirements due to the updated simulations performed by Mecaprom, has established the need for a higher peak output torque of the engine (going from 320 Nm from the first evaluations to the current 550Nm), however reducing the maximum engine speed up to 5000rpm.

As a consequence, a new market analysis and search was necessary, and the search of alternative suppliers was done.


	Product number	TZ260XSDE4 (BMLA55-XQL)
Motor	Rated power (kW)	40
parameters	Maximum power (kW)	80

The electric motor chosen has these characteristics:

Eme E-tract Project 0310000001

Rated torque (Nm)	242
Peak torque (Nm)	550
Rated speed (rpm)	1575
Maximum speed (rpm)	5000
Insulation class	Н
Cooling method (cooling)	Water cooling
Protection level	IP67
Dimensions (outer diameter / length) (mm)	Φ 326*280mm
	Φ20
	81
	Counterclockwise
	Peak torque (Nm) Rated speed (rpm) Maximum speed (rpm) Insulation class Cooling method (cooling)

A related and fundamental component for the usage of the electric motor is the <u>controller</u>, used to produce a variable output voltage range, that are used within motor speed controllers. Control and feedback circuitry is used to adjust the final output of the inverter section which will ultimately determine the speed of the motor, operating under its mechanical load.

The controller chosen has these characteristics:

	Product number	KTZ38X40SG3B (PC30-N)					
	Rated battery input voltage (V)	380					
	Battery input voltage range (V)	333 - 437					
	Low-voltage power supply voltage (V)	12					
	Rated output current (A)	200					
Controller	Maximum output current (A)	400					
parameters	Rated capacity (KVA)	60					
	Maximum capacity (KVA)	120					
	Protection level	IP67					
	Outer diameter of water nozzle	Φ 16					
	Body size (mm)	300 * 284 *149					
	Mass (kg)	15					

In the figure below it is possible to focus attention on the attachment flange between the electric motor and the transmission.

The flange has been specially made to allow the connection between the two systems and has been designed in a flexible and robust way to withstand the stresses and vibrations of the vehicle.

The thicknesses of the motor connection interfaces and those of the flange were such as to constitute an oversized coupling without further exceeding with weights and dimensions that would have been useless.

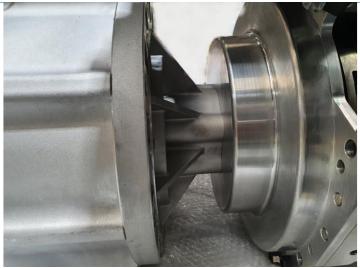
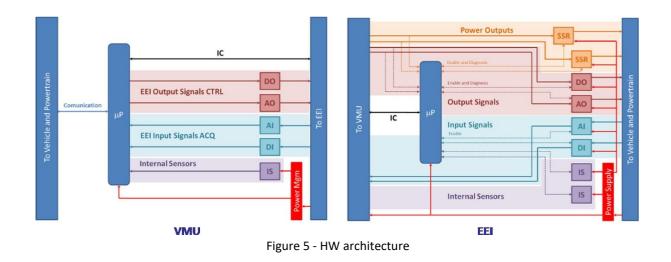


Figure 5 – Flange


ECU (Electronic Control Unit)

A suitable ECU (Electronic Control Unit) shall be implemented for managing the innovative transmission, in particular considering that some function, which is mechanically implemented in traditional AMTs and DCTs, is now implemented by control strategies. In order to be cost effective, ECU shall concentrate and substitute all auxiliary relays used to drive electric ancillaries.

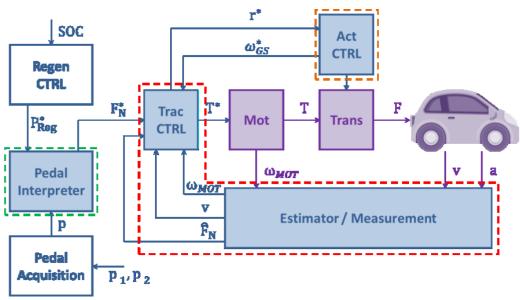
ECU shall be capable of:

- managing vehicle input signal (e.g. accelerator, brake, shift lever, etc.);
- driving main electric ancillaries (e.g. back up light, brake pump enable, etc.);
- controlling and protecting power supply (e.g. A/C compressor, water pump, etc.);
- managing communication networks (e.g. CAN, LIN) to interface original equipment and electric powertrain devices;
- managing fault diagnoses and implementing recovery strategies;
- implementing wheel torque-based traction control logics.

Proposed HW architecture consists of one board, named EEI, in charge of controlling electric load power distribution and of a second board, named VMU, in charge of managing electric traction. On one hand, EEI mainly implements power driver and substitutes all the relays which are spread under the hood for activating electric ancillaries. On the other hand, VMU is focused on supervising traction and vehicular communication. EEI and VMU communicate via a dedicated digital line to allow and exchange of data enhancing safety.

2. General architecture

2.1. Considerations


Specific control algorithms shall be implemented in order to fulfil system targets. Besides usual control functionalities common to embedded traction control and vehicle supervising algorithms, the ECU requires specific logics to be implemented.

These specific functionalities can be gathered into 3 groups:

- gearbox actuation control;
- longitudinal traction control;
- pedal interpreter.

2.2. Control system overview

Generic control system architecture is depicted in the figure which shows specific high level functionalities and their relationships.

Car together to violet blocks (**Mot** and **Trans**) represents plant physical model to be controlled. Three more components complete the architecture:

- regeneration control
- estimation or measure algorithms
- gear shifting actuation control

Eme E-tract Project 0310000001

Briefly, regeneration control calculates the power which can be instantaneously regenerated on the basis of actual SOC value.

Estimation or measurement algorithms shall acquire, filter o estimate variables which characterizes plant status as vehicle speed, acceleration and traction motor speed. Gear shifting actuation control is in charge of controlling auxiliary motor and synchronization of traction motor for performing a correct maneuver.

3. Gear shifting actuation control

3.1. Control purpose

Gear shifting actuation control is in charge of coordinating movements of cam governing gears engagement with traction motor delivered torque and speed in order to obtain a clutch-less shifting.

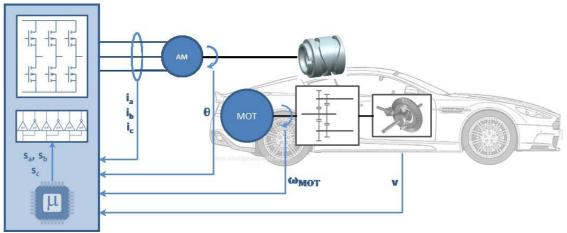


Figure 7 – Gear shifting control sensors and actuators.

Figure above shows an overview of electronic components involved in this control.

Synchronization between auxiliary motor and traction motor is performed on the basis of vehicle speed, involved gear numbers and traction motor speed.

A correct disengagement and engagement are performed taking care of unloading gearbox, that is main shaft applied torque shall be almost null. Moreover, a synchronization of main shaft and secondary shaft speeds is necessary for actuating dog-clutch mechanism. This synchronization is performed keeping main shaft speed inside a band on the respect of secondary shaft speed scaled to main shaft.

Electric drive control shall determine what gear shall be engaged and consequently it shall calculate traction motor torque reference or torque references in the case more power units are installed. Gear selection shall be performed for optimizing transmission exploitation preventing too frequent gear shifting which can be either uncomfortable for the driver or even harmful for the gearbox. Electric drive control shall trigger gear shifting operation once a different gear has been selected and it shall be subdued to gear shifting control requests. Electric drive control shall implement a speed reference tracking algorithm because this feature is necessary during gear shifting operation. Electric drive control shall switch between speed and torque reference smoothly implementing a bump-less strategy based in its internal state and on the state of gear shifting control.

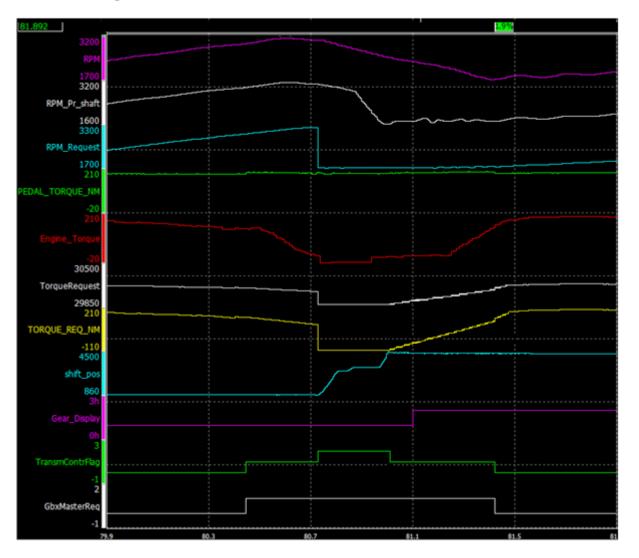
4. Simulation on test bench

Preliminary tests on the gear shift management were carried out to validate the prototype. The tests on the vehicle will be carried out when the system will be installed on the vehicle.

Below are shown first the simulations and then the real tests.

Gear shift Management: UP mode - Simulation

						UP_SHIFT	MANAG	SEMEN1	Г				
CAN Signals		Graphics									Des	scription	
Phases		Pre - Shift							Pre Shift phase includes preliminary operations before gear desingaging Gear Shift phase includes operations while gear desingaging / syncro / engaging				
	Engine Torque	Request of torque reduction				Ramp of torque Restitution						on after gear engagement The initial value of Torque Reduction ramp is the current Engine Torque	
TorqueRequest			N							••••••	Ramp	when paddleshift was pressed. The Minimum Value of torque can be	
from TCU to ECU				ım value e Request							or Step	calibrated (value usually negative) The Restitution torque ramp links the	
	No Request							No Request				requested minimum torque value to Driver Pedal Torque.	



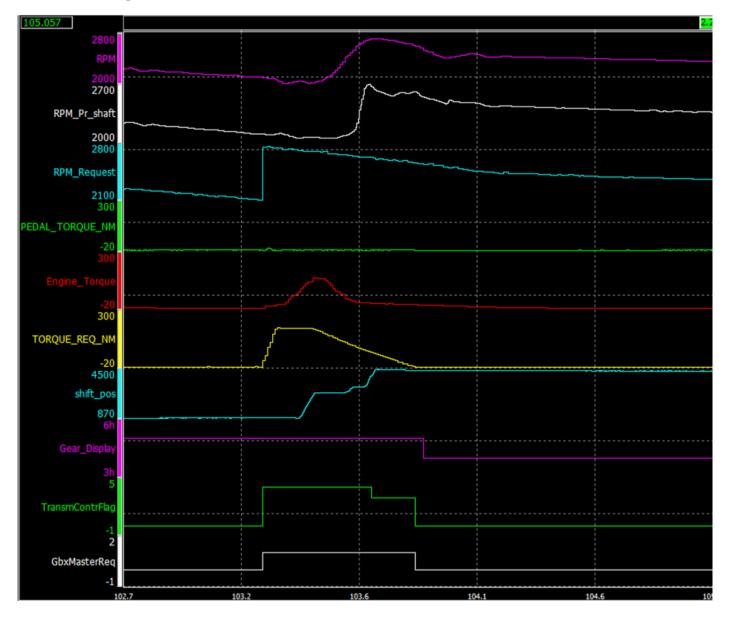
	UP_SHIFT MANAGEMENT											
CAN Signals			Graphics	, ,	De	scription						
EngineRPM								_				
PrimaryShaftRPM						· · .	Ramp					
RPMRequest	No Request			No Requi	est		or	TCU requests to the engine the necessary speed to syncronize with the				
from TCU to ECU		RPM Target gear up				_	Step	Primary shaft speed.				
TransmissionControlFB TCU sends this flagbyte to ECU	0		2			no intervention Upshift TORQUE Control		Pre-shift phase (torque reduction): TC asks for torque control while asking fo				
to manifest it will use Rpm or Torque Control		1					RPM Control	torque reduction. Gear-shift phase (cut-off): TCU asks for				
GbxMasterRequest	0	1			0	GCU int	ervention OFF					
GbxMasterRequest TCU sends this flag to ECU to ask for Engine control over driver gas pedal							ervention ON	Rpm Control, to syncronize Engine rpm to primary shaft rpm. Post-Shift phase (torque restitution): TCU asks for torque control.				
			Gear Engag	e								
ShiftPosition												
GearDsply			X + 1				ds the gear informatic Dmeans Neutral, 11 m					
message communicated by can		X				usualiy	Smeans Neutral, 11 M					

Eme E-tract Project 0310000001

Gear shift Management: UP mode – Real test

Gear shift Management: DOWN mode - Simulation

		DOWN_SHIFT MANAGEMENT											
CAN Signals			Graphics			Descr	iption						
Phases		Pre-Shift	Gear Shift	Pre Shift phase includes preliminary operations before gear desingaging Gear Shift phase includes operations while gear desingaging / syncro / engaging Post Shift phase includes operation after gear engagement									
			Total Down Shift Opera										
		Kicker ph	ase				Kicker: TCU asks for torc						
					\	Ramp	abrupt raise, the main control is on RPM.						
TorqueRequest	Engine Torque	/	Keeping RPM			or	Then TCU links this valu with the gas pedal						
						Step	demanded torque.						
	No Request			No Reques	t								

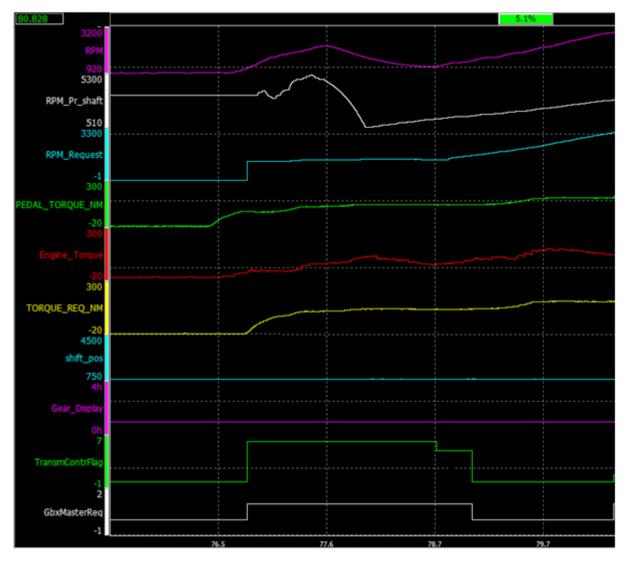

Г

	DOWN_SHIFT MANAGEMENT										
		RPN	1 Target gear	down		No Request					
EngineRPM		/_									TCU asks for the necessary
PrimaryShaftRPM										Ramp	rpm to sincronyze the engine with the primary shaft.
RPMRequest	No Request									or	
										Step	
			4							nift rpm control	
TransmissionControlFB						3		3	downsh	nift torque control	TCU asks for Rpm Control t syncronize the engine
	0							0	no inter	rvention	speed with primary shaft.
			1							tervention ON	Then TCU asks for torque
GbxMasterRequest	0							0	GCU int	tervention OFF	control to converge the
											Engine Torque to Pedal Torque.
ShiftPosition											
						Gear Disengage					
GearDsply		X									
-r <i>i</i>						X - 1					
								ĺ			

Eme E-tract Project 0310000001

Gear shift Management: DOWN mode – Simulation

Gear shift Management: DRIVEAWAY mode – Simulation


CAN Signals	DRIVEAWAY PHASE											
			Description									
		Total o	lriveaway Phase									
Phases												
						TorqueRequest asked by to the GasPedal	TCU is proportional					
TorqueRequest												
	Engine Torque											
	No Request				No Request							

	DRIVEAWAY PHASE											
CAN Signals			Gr		Description							
		PDMPaqua	st proportional to	Gas Bodal		ngine RPM						
EngineRPM								The Engine RPM Re to the GasPedal	equest is pro	portional		
PrimaryShaftRPM			/									
RPMRequest	No Request					No Request						
				6				driveaway rpm cor		The first phase of driveaway starts		
TransmissionControlFB					5			driveaway torque	control	when the gas_pedal is pressed. TCU send a Rpm Request to ECU, an		
	0			1			1	no intervention GCU intervention		then begin closing clutch. When the Engine Rpm is syncroniz		
GbxMasterRequest	0						0	no intervention		to the PrimaryShaft and the clutch almost closed, TCU asks to Torque control to align the Engine Torque the Driver Pedal Torque. When the clutch is totally closed, TCU turn of the control.		
ShiftPosition												
GearDsply								FIRST Gear REVERSE Gear	or			
Ccurpshi												

Gear shift Management: DRIVEAWAY mode – Real test

