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1. Introduction 

1.1 Aim 

The goal of this algorithm is to reduce the cost of charging EVs based on the renewable 

energy forecast, EV user preferences, offer of up and down regulation services and charging 

based on energy prices. A smart charging algorithm based on Mixed-Integer Programming 

(MIP) is proposed that controls the charging of an EV fleet based on the above applications.  

1.2 Nomenclature  

t, j, n – Optimization indices for time, electric vehicle (EV) at charger j, node index in the 

grid, respectively  

∆𝑇 – Time step (data resolution) (min) 

𝑇 – Time duration of optimization horizon 

𝑡𝑠𝑡𝑎𝑟𝑡 – Start time of the smart charging algorithm 

𝑡𝑒𝑛𝑑 – End time of the smart charging algorithm 

𝐽 – Number of EV chargers in the car park 

𝑝𝑗
𝑒(𝑎𝑟)

 – ‘Average rate’ charging power of jth EV (kW) 

𝐶𝑒𝑣 – Charging costs for entire EV fleet (€) 

𝑆𝑃𝑉 – Revenue from sales of renewable power (€) 

𝑆𝑎𝑠 – Revenue from sales of ancillary services (€) 

𝐶𝑎𝑟 ,𝐶𝑖𝑚𝑚 ,𝐶𝑜𝑝𝑡 – Net costs for average rate, immediate and optimized charging from PV (€) 

1.3 Optimization input parameters 

Electric vehicle & user parameters (index n,j: EV j at node n) 

Parameter Note Source Available/Protocol 

𝑇𝑛,𝑗
𝑎 – Arrival time of EV (h) User Elaad has prediction model 

Input from user (e.g. from app, considered 

as prediction):   Not possible for now, but 

possible in the future; 

Actual arrival time can be informed to 

CSO through OCPP 

𝑇𝑛,𝑗
𝑑 – Departure time of EV 

(h) 

User Yes, at least through next version of 15118, 

the user can inform it, and the info will be 

transmitted via Electric Vehicle 
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Communication Controller (EVCC, 

installed in EV) to the Supply Equipment 

Communication Controller (SECC, in EVSE) 

𝐵𝑛,𝑗
𝑎 – Energy in the battery 

of the jth EV currently = 

Current SOC in terms of 

energy (kWh) 

EV Yes, in 15118 

𝐵𝑛,𝑗
𝑑 – Required energy in 

the battery of jth EV at 

departure 𝑇𝑛,𝑗
𝑑 (kWh) 

User Same as below 

𝑑𝑛,𝑗 – Charging energy 

demand of jth EV, 

(𝐵𝑛,𝑗
𝑑 − 𝐵𝑛,𝑗

𝑎 ) (kWh) 

User Yes, in 15118 

𝐶𝑛,𝑗
𝑝

– Penalty for not 

meeting energy 

demand 𝑑𝑛,𝑗 by 

departure time 𝑇𝑛,𝑗
𝑑  of jth

EV (€/kWh) 

CSO 

𝐵𝑛,𝑗
𝑚𝑖𝑛 ,𝐵𝑛,𝑗

𝑚𝑎𝑥 – Minimum and 

maximum possible 

energy in the battery of 

the jth EV, respectively 

(kWh) 

EV &/or 

User 

Yes, in 15118 new version, the mechanism 

is: 

Each car has an ID, which can map to all 

the car information. The card for charging 

payment will be no longer needed. 

Or via database (Indirect) 

𝑝𝑛,𝑗
𝑚𝑎𝑥 – Maximum charging 

power of jth EV (kW) 

when its SOC is  𝑆𝑛,𝑗
𝐶𝑉

EV Yes, in 15118, in the form of: 

- Max V (RMS phase to neutral voltage) 

- Max and Min current 

But not sure if it’s absolute Pmax, or the 

SOC dependent real-time Pmax. 

Or, Via database or Use data from past 

charging sessions – May not be accurate 

𝜂𝑛,𝑗
𝑒𝑣 – Efficiency of charging 

of the battery of jth EV 

including the losses in 

the battery, EVSE, on-

board charger (kW)  

EV Via database or Use data from past 

charging sessions 

𝑆𝑛,𝑗,𝑡 SOC value of the 

battery 

EV 

𝑆𝑛,𝑗
𝐶𝑉 SOC value when the 

battery charging 

EV 
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process shifts from CC 

to CV stage of jth EV  

𝑝𝑛,𝑗
𝐶𝐶0 Maximum charging 

power of jth EV when 

the SOC is at its lowest 

level 

EV 

∆𝑖𝑛,𝑗
𝑒+ The minimum current 

step of adjustment 

Integer 

EV&/or 

EVSE 

𝐵𝑛,𝑗
𝑆𝐶 – Minimum assure 

capacity in the battery 

of the jth EV (kWh), only 

above which the smart 

charging activation is 

allowed 

EV &/or 

User 

Charger parameters (index j,n) 

Parameter Note Source Protocol 

𝑝𝑛,𝑗
𝐸𝑉𝑟 – Rated power of the EV 

charger connected to 

the jth EV (kW)  

EVSE/CSO Yes/Installation 

Location of the charger 

and the node  

EVSE/CSO Yes/Installation 

Voltage and frequency 

at the EV charger  

Not possible to know at the moment, 

but a different smart meter protocol 

could achieve it in the future. 

Local energy parameters (index t ,n; time t at node nth where the car parker is connected to) 

Parameter Note Source Protocol 

𝑝𝑛
𝑃𝑉𝑟 – Rated power of renewable power source 

connected to (or close to) the car park 

(kWp). If there is no local generation,  

𝑃𝑛
𝑃𝑉𝑟 can be set to zero 

CSO or 

User 

Yes/Installation 
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𝜂𝑛,𝑡
𝑖𝑛𝑣 – Efficiency of the PV inverter (%)  EVSE 

𝐾𝑛,𝑡
𝑃𝑉 – Scaling factor to factor in the non-

optimal generation of the renewable 

energy source (e.g., shading of PV panels)  

CSO/ 

User 

𝐶𝑃𝑉 – Cost of obtaining PV energy (€/kWh) CSO/ 

User 

𝑝𝑛,𝑡
𝑃𝑉(𝑓𝑐) – Power generation forecast of renewable 

generation source installed at the car park 

(kW) 

CSO/ 

User 

BRP takes the 

prediction into 

consideration 

𝑦𝑛,𝑡
𝑃𝑉(𝑓𝑐) – Maximum uncertainty in solar forecast 

data (%) 

CSO/ 

User 

𝑝𝑛,𝑡
𝑃𝑉(𝑚𝑒𝑎𝑠) – This is the real-time PV generation 

measurement (kW) 

Real time meas. of 

loads, PV power every 

5s   

𝑝𝑛,𝑡
𝑙𝑜𝑐𝑎𝑙 – This is the net value of the local loads 

(kW) 

𝑉𝑛,𝑡 - This is the voltage of node nth, it is 

assumed that everything connected to this 

node has the same voltage. 

ISO (TSO) & DSO parameters (index t) 

Parameter Note Source of 

parameter 

Protocol 

𝐶𝑡
𝑒(𝑏𝑢𝑦)

, 𝐶𝑡
𝑒(𝑠𝑒𝑙𝑙) – Market clearing price for 

buying and selling electricity 

from the grid respectively 

(€/kWh) 

BRP Yes, openADR, current & 

future 

Energy supplier, BRP and DSO 

send price signals, the DSO 

cam also send the available 

capacity signal. 

𝐶𝑡
𝑟(𝑢𝑝)

,𝐶𝑡
𝑟(𝑑𝑛) – Market clearing price for 

offering reserve capacity for 

up and down regulation 

respectively (€/kW) 

TSO Maybe, challenge for FCR is 

reliability & time lag 

𝑝𝑛,𝑡
𝐺+, 𝑝𝑛,𝑡

𝐺− – Distribution network (Grid) 

capacity for drawing and 

DSO Command sent from back-

end to the CSO, via openADR 

and OSCP: 

- OSCP, old version is mainly 
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feeding power to car park 

respectively (kW)  

for EV applications, the new 

version will have broader in 

general applications. 

- OpenADR: might be applied 

in OSCD project (‘capacity 

guard’ profile) 

* The market price is set as all the same for one grid, but the grid capacity limitation is local 

congestion based thus the grid power limitation has the index “n”.  

Note – EV chargers are not controlled in real time from the CSO end. Charging plans are sent 

to charge with profile for the rest of the day. If there is a change/update, a new plan is sent.  

1.4 Optimization variables  

All variables listed below are positive 

𝑝𝑛,𝑗,𝑡
𝑒+  – Charging power of jth EV which connected to the nth node at time t (kW) 

𝑖𝑛,𝑗,𝑡
𝑒+  – Charging current of jth EV which connected to the nth node at time t (kW) 

𝐵𝑛,𝑗,𝑡 – Battery energy of jth EV battery which connected to the nth node at time t (kWh) 

𝑝𝑛,𝑡
𝑃𝑉 – Power generated by the renewable energy source at the car park at time t, nth

node (kW) 

𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

, 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

 – Reserve power capacity offered to grid for up and down regulation by jth EV 

at time t, nth node (kW) 

𝑃𝑛,𝑡
𝑔(𝑖𝑚𝑝)

, 𝑃𝑛,𝑡
𝑔(𝑒𝑥𝑝)

– Power imported and exported to grid by the EV car park at time t, 

respectively (kW) 

Figure 1 Immediate, average rate, randomly delayed and smart charging of EV



9 

2. Smart charging of EVs 

2.1 Control/Uncontrolled charging 

Immediate and average rate charging  

Today, when an EV arrives at the workplace and is connected to the electric vehicle supply 

equipment (EVSE), the EV starts charging essentially immediately at the nominal maximum 

EVSE power rating, 𝑝𝑐
𝐸𝑉𝑟. The charging continues at approximately constant power until the 

battery is nearly full1. This is referred to as immediate charging (IMM) or uncontrolled charging 

[1]. This is the simplest form of charging requiring no information from the user or 

communication infrastructure and results in the lowest charging time. However, IMM typically 

results in a huge demand on the grid based on the EVSE, as shown in Figure 1.  

At the same time, the long parking times of EVs at workplace offers the flexibility in scheduling 

the charging in terms of both charging power and duration. This means that EVs can be 

charged at a much lower power than the EVSE nominal rating if the EV user arrival time, 𝑇𝑗
𝑎, 

departure time, 𝑇𝑗
𝑑 and required energy demand, 𝑑𝑗 are known. One approach is the 

“Average Rate” (AR) charging policy [1], where the charging power 𝑝𝑗
𝑒(𝑎𝑟)

 is the minimum of 

the EVSE capacity, 𝑝𝑐
𝐸𝑉𝑟 , and the ratio of the energy demand divided by the parking time of 

the EV1: 

𝑝𝑗
𝑒(𝑎𝑟)

= 𝑀𝑖𝑛. {
𝑑𝑗

𝑇𝑗
𝑑 − 𝑇𝑗

𝑎 , 𝑝𝑐
𝐸𝑉𝑟} ∀ 𝑡 ∈ [𝑇𝑗

𝑎;𝑇𝑗
𝑑] (1) 

The advantage of the AR policy is that the charging of the fleet is spread throughout the day 

instead of being concentrated around the arrival time (typically early morning), as seen in 

Figure 1. 

Smart charging  

The optimal way to charge EVs is hence to schedule the charging by taking into 

consideration the EV user preferences, local renewable generation, distribution network and 

energy prices from the market. Figure 1 shows an example of smart charging where the EV 

charging follows the PV generation. Further, EVs can have an extremely fast ramp up and 

ramp down rate. CHAdeMO and Combo EV charging standards for DC charging stipulate 

response time of 200ms for power changes [2]. This makes EVs ideal candidates for providing 

ancillary services in the form of frequency regulation and voltage regulation services to the 

grid [3]–[6].  

1 The analysis does not consider the duration in the constant-voltage (CV) charging mode, 

which occurs typically when EV battery is above 80% SOC and the maximum charging power 

is limited [12]. 



10 

Following the formulation in [4], [7], an Energy Services Company (ESCo) company acts as an 

intermediary between the wholesale market operated by the Independent System Operator 

(ISO) and the EV end-users (Transmission system operator, TSO in case of Europe). The ESCo 

operates at the car park where people charge their EVs, and the location has local 

renewable energy generation like overhead PV installation. The motive of the ESCo is to 

schedule the charging of the EV and feeding of PV power to the grid in such a way that EV 

charging costs are lowered, regulation services are offered to the ISO, and at the same time, 

the income from PV is increased. ESCo achieves this motive by using an Energy Management 

System (EMS) to schedule the EV based charging on a multitude of inputs: 

1. Information from the EV user about EV type, arrival and departure times, the state of 

charge (SOC) of EV battery and energy demand. 

2. Settlement point prices for buying and selling electricity from the grid at time t

(𝐶𝑡
𝑒(𝑏𝑢𝑦)

, 𝐶𝑡
𝑒(𝑠𝑒𝑙𝑙)). 

3. Clearing prices for capacity for offering frequency regulation reserves to the ISO for up 

and down regulation. (𝐶𝑡
𝑟(𝑢𝑝)

,𝐶𝑡
𝑟(𝑑𝑛)

). 

4. Distribution network (Grid) limits for drawing and feeding power between the EV car park 

and the grid (𝑝𝑡
𝐺+, 𝑝𝑡

𝐺−). These values can be adjusted to implement demand side 

management (DSM).  

5. Renewable energy forecast information to help reduce the uncertainties due to variability 

in generation on diurnal and seasonal basis (𝑝𝑡
𝑃𝑉(𝑓𝑐)

). Focus here is on PV, but it can be 

other forms of generation as well.  

The main contributions of the work reported below include: 

 Proposing an integrated model that captures charging of EV from PV, use of dynamic 

grid prices, using EV to offer ancillary services, and considering distribution network 

capacity constraints as a single Mixed-Integer Programming (MIP) formulation. The 

algorithm demonstrates that the integrated formulation results in large cost savings, which 

is much higher than what has been achieved earlier. This is due to the addition of benefits 

from each application, such that the net benefit is economically attractive. With the prior 

approaches, the economic benefits were too small to warrant mass adoption of smart 

charging 

 The integrated scheduling of EV and PV makes PV an economically controllable 

commodity with respect to feeding power to the grid, which would not be possible 

otherwise. Depending on grid energy prices, PV energy can be diverted either to the EV 

or to the grid or curtailed.   

2.2 EMS Architecture and market structure 

EV and user input 

Each EV arrives at the car park which has PV panels and connected to the nth node  with a 

battery of energy content 𝐵𝑛,𝑗
𝑎  at time 𝑇𝑛,𝑗

𝑎 . The EV owners provide the information to the EMS 
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about their expected departure time 𝑇𝑛,𝑗
𝑑  and charging energy demand 𝑑𝑛,𝑗. This means that 

the departure energy content of the vehicle 𝐵𝑛,𝑗
𝑑  is:  

𝐵𝑛,𝑗
𝑑 = 𝐵𝑛,𝑗

𝑎 + 𝑑𝑛,𝑗  (2) 

If the required SOC is not reached by the departure time, the EV owner will be compensated 

by the ESCo at the rate of 𝐶𝑛,𝑗
𝑝
€/kWh. The users can enter the maximum and minimum 

allowed energy of the EV battery (𝐵𝑛,𝑗
𝑚𝑖𝑛 ,𝐵𝑛,𝑗

𝑚𝑎𝑥) and the maximum charging power (𝑝𝑛,𝑗
𝑚𝑎𝑥) 

respectively. The efficiency of the EV battery for charging (𝜂𝑛,𝑗
𝑒𝑣 ) is either obtained from the EV 

or stored in a database within the EMS for different EV models.  
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Figure 2 Schematic of the Energy Management System for the solar powered EV parking lot 

consisting of several EV chargers as shown above.  

EV charger 

Each location of the EV park (node nth) is connected to a PV array of rated power 𝑝𝑛
𝑃𝑉𝑟 via a 

maximum power point tracking (MPPT) DC/DC converter [8]. The EV charger has an 

efficiency of η𝑛,𝑗
𝑐ℎ , which for AC chargers is close to 100%. Each EV charger draws 𝑃𝑛,𝑗,𝑡

𝑑𝑟𝑎𝑤power 

from the EV car park as determined by the EMS. Different EV chargers can exchange power 

within the car park from the PV and these are ‘intra-park’ power exchanges. When the net 
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‘intra-park’ energy exchanges are non-zero, the EV park at node nth imports or exports power 

with the external grid referred to as 𝑃𝑛,𝑡
𝑔(𝑖𝑚𝑝)

, 𝑃𝑛,𝑡
𝑔(𝑒𝑥𝑝)

respectively.  

Trading energy and reserves in the energy market  

The ESCo uses the EMS to control the solar powered EV car park for energy trading with the 

grid. Since 𝑝𝑛,𝑡
𝑔(𝑖𝑚𝑝)

, 𝑝𝑛,𝑡
𝑔(𝑒𝑥𝑝)

 are small relative to the power traded in the market, the ESCo is a 

price taker and does not influence the market clearing prices. It uses the settlement point 

prices for trading power in the market and reserve capacity prices for offering up and down 

regulation services. Markets like the Electric Reliability Council of Texas (ERCOT) provide 

different prices for offering capacity reserves for up and down regulation (asymmetric, 

𝐶𝑡
𝑟(𝑢𝑝)

≠𝐶𝑡
𝑟(𝑑𝑛)

). However, other US markets such as PJM trade up and down regulation as a 

single product (symmetric). In order to make the EMS flexible and work with both types of 

markets, it is designed to take different inputs for 𝐶𝑡
𝑟(𝑢𝑝)

 and 𝐶𝑡
𝑟(𝑑𝑛)

 and allow for a requirement 

that up and down regulation quantities could be equal.  

2.3 Receding horizon model predictive control 

There are two sources of variability in the EV-PV system. The first is the diurnal and seasonal 

variation in PV generation due to changes in weather. The EMS uses solar forecast information 

as an input to predict the PV variation. Any solar forecast data source can be used for the 

given MIP formulation. For example, the online short-term solar power forecasting [9], the 

autoregressive integrated moving average (ARIMA) models [10] or any of the methods listed 

in [11]. 𝑝𝑛,𝑡
𝑃𝑉(𝑓𝑐)

 is power generation forecast for an optimally orientated 1kWp PV array at the 

car park location connected to node nth with a maximum uncertainty in forecast of 𝑦𝑃𝑉
𝑓𝑐

. It is 

vital to recognize that all forecasting methods will have forecasting errors in terms of temporal 

and spatial resolution. The second variability is the variation in the arrival and departure 

patterns of the EV user and the EV parameters like charging powers limits, efficiency of the 

battery and SOC.   

The EMS is implemented as a receding horizon model predictive control with a time step ∆𝑇 to 

manage these two variations. The horizon for the model is flexible and can be triggered and 

reset by events or with fixed reset cycle. The event could be new arrival cars, the sudden 

change of certain system parameters e.g. the solar radiation, the earlier departure car than 

predicted. This means whenever there is an event happens or when it is the time to reset, the 

EMS can utilize updated forecast information and input parameters, perform the optimization 

and plan the EV charging for the rest of the day. Hence, the receding horizon 

implementation helps in minimizing forecasting errors and model inaccuracies with a 

reasonable frequency. 
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3. MIP formulation  

This section describes the objective function and constraints for the MIP formulation of the 

EMS. It is important to note that all optimization variables considered are positive.  

3.1 Decision variables 

These variables are expected outcomes of the algorithm 

𝑝𝑛,𝑗,𝑡
𝑒+  – Charging power of jth EV which connected to the nth node  at time t (kW) 

𝑖𝑛,𝑗,𝑡
𝑒+  – Charging current of jth EV which connected to the nth node at time t (kW) 

𝐵𝑛,𝑗,𝑡 – SOC of jth EV battery which connected to the nth node at time t (kWh) 

𝑝𝑛,𝑡
𝑃𝑉 – Power generated by the renewable energy source at the car park at time t, node n

(kW) 

𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

, 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

 – Reserve power capacity offered to grid for up and down regulation by jth EV 

at time t, node n (kW) 

𝑃𝑛,𝑡
𝑔(𝑖𝑚𝑝)

, 𝑃𝑛,𝑡
𝑔(𝑒𝑥𝑝)

– Power imported and exported to grid by the EV car park at time t, 

respectively (kW) 

3.2 Objective function  

Main function 

𝑀𝑖𝑛. 𝐶𝑛
𝑜𝑝𝑡

= ∑(𝐵𝑛,𝑗
𝑎 + 𝑑𝑛,𝑗 − 𝐵

𝑛,𝑗,𝑇𝑗
𝑑) 𝐶𝑛,𝑗

𝑝

𝐽

𝑗=1

+ ∆𝑇∑𝑝𝑛,𝑡
𝑃𝑉 𝐶𝑃𝑉

𝑇

𝑡=1

+ ∆𝑇 ∑( 𝑝𝑛,𝑡
𝑔(𝑖𝑚𝑝)

𝐶𝑡
𝑒(𝑏𝑢𝑦)

− 𝑝𝑛,𝑡
𝑔(𝑒𝑥𝑝)

𝐶𝑡
𝑒(𝑠𝑒𝑙𝑙))

𝑇

𝑡=1

−  ∆𝑇 ∑∑𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

𝐶𝑡
𝑟(𝑢𝑝)

+ 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

𝐶𝑡
𝑟(𝑑𝑛)

𝐽

𝑗=1

𝑇

𝑡=1

(3)

The objective function is to minimize the total costs 𝐶𝑛
𝑜𝑝𝑡

 of EV charging, feeding PV power 

and offering reserves at node nth. The formulation is such that the 𝐶𝑛
𝑜𝑝𝑡

can be positive or 

negative. It has five components, namely: 

 The penalty to be paid to the user if the energy demand 𝑑𝑗,𝑛 is not met by the departure 

time 𝑇𝑗,𝑛
𝑑 .𝐶𝑗,𝑛

𝑝
 is EV user specific and the penalty can be different for each user based on 

EV battery size, tariff policy and customer ‘loyalty’ program.   

 PV power that is used to charge the EV need not always be free of cost. If the PV is 

installed by a third-party, it can be obtained at a pre-determined contractual cost of 𝐶𝑃𝑉. 

 The cost of buying and selling energy from the grid based on the settlement point prices 

𝐶𝑡
𝑒(𝑏𝑢𝑦)

, 𝐶𝑡
𝑒(𝑠𝑒𝑙𝑙). The market dynamics will ensure that 𝐶𝑡

𝑒(𝑏𝑢𝑦)
≥ 𝐶𝑡

𝑒(𝑠𝑒𝑙𝑙)
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 Income 𝑆𝑎𝑠 obtained from offering reserve capacity 𝑝𝑡,𝑗,𝑛
𝑟(𝑢𝑝)

, 𝑝𝑡,𝑗,𝑛
𝑟(𝑑𝑛)

 to the TSO.  

Apart from that, the green part in the equation represents the variables and the rest are the 

input parameters. 

Sub-functions 

This section explained how the parameters/variables are defined or how are they related to 

each other. 

Equations(4)-(5) are used to set the initial capacity of the EV battery and estimate the 

capacity of the battery 𝐵𝑛,𝑗,𝑡 based on the charging efficiency (𝜂𝑛,𝑗
𝑒𝑣 ) and power 𝑝𝑛,𝑗,𝑡

𝑒+

respectively. It is assumed that the net energy delivered/absorbed by the EV over one time 

period due to offer of reserves is zero [4], [7]. Hence, 𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

, 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

 do not appear in Equation 

(4),(5) for SOC estimation. 

Equation (6) shows how is the charging current calculated from the charging power and the 

node voltage, and Equation (7) shows how the state of the charge of the battery is 

calculated. 

𝐵𝑛,𝑗,𝑡 = 𝐵𝑛,𝑗
𝑎 + ∆𝑇∑(𝑝𝑛,𝑗,𝑡

𝑒+ 𝜂𝑛,𝑗
𝑒𝑣 )

𝑡

𝑇𝑗
𝑎

∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗
𝑎 ;𝑇𝑛,𝑗

𝑑 ] (4)

𝐵
𝑛,𝑗,𝑇𝑛,𝑗

𝑑 = 𝐵𝑛,𝑗
𝑎 + ∆𝑇∑(𝑝𝑛,𝑗,𝑡

𝑒+ 𝜂𝑛,𝑗
𝑒𝑣 )

𝑇𝑗
𝑑

𝑡

∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗
𝑎 ;𝑇𝑛,𝑗

𝑑 ] (5)

𝑝𝑛,𝑗,𝑡
𝑒+ = 𝑖𝑛,𝑗,𝑡

𝑒+ × 𝑉𝑛,𝑡 ∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗
𝑎 ;𝑇𝑛,𝑗

𝑑 ] (6)

𝑆𝑛,𝑗,𝑡 =
𝐵𝑛,𝑗,𝑡 − 𝐵𝑛,𝑗

𝑚𝑖𝑛

(𝐵𝑛,𝑗
𝑚𝑎𝑥 − 𝐵𝑛,𝑗

𝑚𝑖𝑛)
∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗

𝑎 ;𝑇𝑛,𝑗
𝑑 ] (7)

3.3 Acceptance criteria 

Charger accepts EV 

When an EV arrives at the EV car park connected to node n, it is connected to one of the 

chargers. The user links to the EMS and the EMS instructs the user on which EV charger he/she 

must connect to, based on two ‘acceptance criteria’. The first criteria is that the energy 

demand 𝑑𝑛,𝑗 and parking time, (𝑇𝑛,𝑗
𝑑 − 𝑇𝑛,𝑗

𝑎 ) of all the EVs connected to a EV charger must be 

within the power limits of the charger, (8). The second criteria is that the arrival energy 

content of the vehicle must be above the minimum limit as set by the user, (9).  This is to 

ensure that constraint (16) is satisfied.  

If the input from the user are not satisfied with the condition, especially the energy demand 

and the departure time, then user will be asked to re-input its requirements and the car 

information. 
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𝑑𝑛,𝑗

𝑇𝑛,𝑗
𝑑 − 𝑇𝑛,𝑗

𝑎 ≤ 𝑀𝑖𝑛. {𝑝𝑛,𝑗
𝐸𝑉𝑟 , 𝑝𝑛,𝑗

𝑚𝑎𝑥} ∀ 𝑛, 𝑗 (8)

𝐵𝑛,𝑗
𝑚𝑖𝑛 ≤ 𝐵𝑛,𝑗

𝑎 ∀ 𝑛, 𝑗  (9)

Smart charging availability 

There is another acceptance criteria which allows the EMS to decide if the smart charging 

algorithm can be activated and applied on certain EV. The condition is the SOC of the EV 

𝐵𝑛,𝑗,𝑡 has to be no less than the emergency SOC value 𝐵𝑛,𝑗
𝑆𝐶 , as indicated in Equation (10). 

𝐵𝑛,𝑗,𝑡 ≥ 𝐵𝑛,𝑗
𝑆𝐶 ∀ 𝑛, 𝑗  (10)

3.4 Constraints 

Constraints: EV and user inputs 

The EMS at node n controls the charging power 𝑝𝑛,𝑗,𝑡
𝑒+ , up and down regulation reserve 

capacity 𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

, 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

 of each EV at time t. 𝑝𝑛,𝑗,𝑡
𝑒+  have to be within the power limits of the EV 

charger  𝑝𝑛,𝑗
𝐸𝑉𝑟 and the charging power limits as set by the EV, respectively, as shown in 

equations (11)-(13).  

The maximum charging powers are also dependent on the SOC of the EV battery as shown in 

(12)-(13). For example, during the constant current (CC) charging stage, the voltage of the 

battery is gradually increase with the rising SOC value. Therefore the maximum charging 

power is also increase along with the SOC from 𝑝𝑛,𝑗
𝐶𝐶0  until it reaches the maximum charging 

power 𝑝𝑛,𝑗
𝑚𝑎𝑥. It is assumed that the power increase during CC stage is linear. Then, fast 

charging of EV battery (CC stage) cannot be done beyond 80% SOC of the battery [12]. 

Here, it is assumed that the maximum charging power linearly reduces from 𝑝𝑛,𝑗
𝑚𝑎𝑥,to zero 

when the battery is charged beyond 80% SOC till 100% (𝑆𝑛,𝑗
𝐶𝑉=0.8). Even though the exact 

dependence of battery power on the SOC is non-linear, this is not considered here as it is 

beyond the scope of the chapter and would prevent us from casting the problem into an 

MIP formulation.  The curve of how the maximum charging power changing with the SOC 

value is in Figure 3 

Equation (10) is the simplified equation of how the maximum charging power varies with SOC 

value during constant current (CC) charging stage, where m is assumed as a constant value 

in this project. 

𝑝𝑛,𝑗,𝑡
𝑒+ ≤ 𝑃𝑛,𝑗

𝐸𝑉𝑟 ∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗
𝑎 ;𝑇𝑛,𝑗

𝑑 ] (11)

𝑝𝑛,𝑗,𝑡
𝑒+ ≤

𝑝𝑛,𝑗
𝑚𝑎𝑥 − 𝑝𝑛,𝑗

𝐶𝐶0

𝑆𝑛,𝑗
𝐶𝑉 ∗ 𝑆𝑛,𝑗,𝑡 + 𝑝𝑛,𝑗

𝐶𝐶0
∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗

𝑎 ;𝑇𝑛,𝑗
𝑑 ] & 𝑆𝑛,𝑗,𝑡

≤ 𝑆𝑛,𝑗
𝐶𝑉 (12)

𝑝𝑛,𝑗,𝑡
𝑒+ ≤

𝑝𝑛,𝑗
𝑚𝑎𝑥

(1 − 𝑆𝑛,𝑗
𝐶𝑉)

(1 − 𝑆𝑛,𝑗,𝑡) ∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗
𝑎 ;𝑇𝑛,𝑗

𝑑 ]& 𝑆𝑛,𝑗,𝑡 > 𝑆𝑛,𝑗
𝐶𝑉 (13)



16 

0

P
o

w
er

 
(k

W
)

pn,j
max

pn,j
CC0

1Sn,j
CV Sn,j,t

Constant Current 
(CC) stage

Constant 
Voltage 

(CV) stage

Figure 3 Maximum charging power varies with SOC value 

The EMS restricts the capacity of the battery to be within the limits 𝐵𝑛,𝑗
𝑚𝑖𝑛 ,𝐵𝑛,𝑗

𝑚𝑎𝑥 as set by the EV 

and/or user. The battery capacity is controlled to not exceed the initial battery capacity 𝐵𝑛,𝑗
𝑎

plus the required energy 𝑑𝑛,𝑗 as showed in equation (15). Besides, all the charging related 

variables are set to zero when it is out of the charging sessions, as listed in Equation (17) 

When EV is connected: 

𝐵𝑡,𝑗,𝑛 ≥ 𝐵𝑗,𝑛
𝑎 ∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗

𝑎 ;𝑇𝑛,𝑗
𝑑 ] (14)

𝐵𝑡,𝑗,𝑛 ≤ 𝑀𝑖𝑛{𝑑𝑗,𝑛 + 𝐵𝑗,𝑛
𝑎 , 𝐵𝑗,𝑛

𝑚𝑎𝑥} ∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗
𝑎 ;𝑇𝑛,𝑗

𝑑 ] (15)

𝐵𝑡,𝑗,𝑛 ≥ 𝐵𝑗,𝑛
𝑚𝑖𝑛 ∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗

𝑎 ;𝑇𝑛,𝑗
𝑑 ] (16)

When the EV is not connected: 

𝑖𝑛,𝑗,𝑡
𝑒+ , 𝑝𝑛,𝑗,𝑡

𝑒+ , 𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

, 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

,𝐵𝑛,𝑗,𝑡 = 0 ∀ 𝑡 < 𝑇𝑛,𝑗
𝑎 & 𝑡 ≥ 𝑇𝑛,𝑗

𝑑
(17)

Constraints: EV charger, PV and car park 

For each EV charger, if the charging process is on then the lowest allowed charging current is 

6A and the current value should be integer with step of 1A. 

( 𝑖𝑛,𝑗,𝑡
𝑒+ = 0) 𝑂𝑅 ( 𝑖𝑛,𝑗,𝑡

𝑒+ ≥ 6) ∀ 𝑡 ∈ 𝑛, 𝑗, [𝑇𝑛,𝑗
𝑎 ;𝑇𝑛,𝑗

𝑑 ] (18)

Therefore, the maximum charging power is also limited by the current constraints and the 

updated curve is shown in Figure 4. 
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Figure 4 Adjusted maximum charging power varies with SOC value 

Under normal operation, the PV converter extracts maximum power from the PV array using 

MPPT as shown in right side of equation (19). The PV power is dependent on the scaling factor 

𝐾𝑛,𝑗
𝑃𝑉 which scales the installation characteristics (e.g. azimuth, tilt, module parameters) of the 

PV array connected with respect to the 1kWp reference array used for the forecast data 

𝑝𝑛,𝑡
𝑃𝑉(𝑓𝑐)

 and the efficiency of the PV inverter 𝜂𝑛
𝑖𝑛𝑣

The AC grid is used for power exchanges between the EV, PV, the local loads and the grid. 

The intra-car park power exchanges between different EV chargers and PV are related to the 

power exchanged with the external grid 𝑝𝑡
𝑔(𝑖𝑚𝑝)

, 𝑝𝑡
𝑔(𝑒𝑥𝑝)

 using (20). Both 𝑝𝑡
𝑔(𝑖𝑚𝑝)

, 𝑝𝑡
𝑔(𝑒𝑥𝑝)

 will not 

have finite values at the same time because of the way the objective function is formulated 

and because 𝐶𝑡
𝑒(𝑏𝑢𝑦)

≥ 𝐶𝑡
𝑒(𝑠𝑒𝑙𝑙) at all times.    

𝑝𝑛,𝑡
𝑃𝑉 ≤ 𝐾𝑛,𝑡

𝑃𝑉𝑝𝑛
𝑃𝑉𝑟𝑝𝑡,𝑛

𝑃𝑉(𝑓𝑐)
𝜂𝑛
𝑖𝑛𝑣 ∀ 𝑛, 𝑡 (19) 

∑ (𝑝𝑛,𝑗,𝑡
𝑒+ /𝜂𝑛,𝑗

𝑐ℎ )
𝑗=𝐽

𝑗=1
+ 𝑝𝑛,𝑡

𝑙𝑜𝑐𝑎𝑙 − 𝑝𝑛,𝑡
𝑃𝑉 = 𝑝𝑛,𝑡

𝑑𝑖𝑓𝑓
= 𝑝𝑛,𝑡

𝑔(𝑖𝑚𝑝)
− 𝑝𝑛,𝑡

𝑔(𝑒𝑥𝑝)
∀ 𝑛, 𝑗, 𝑡 (20) 

𝑝𝑛,𝑡
𝑔(𝑖𝑚𝑝)

= {𝑝𝑛,𝑡
𝑑𝑖𝑓𝑓

|𝑝𝑛,𝑡
𝑑𝑖𝑓𝑓

> 0} ∀ 𝑛, 𝑗, 𝑡 (21) 

𝑝𝑛,𝑡
𝑔(𝑒𝑥𝑝)

= −1 ∗ {𝑝𝑛,𝑡
𝑑𝑖𝑓𝑓

|𝑝𝑛,𝑡
𝑑𝑖𝑓𝑓

< 0} ∀ 𝑛, 𝑗, 𝑡 (22) 

Next, the up and down regulation offered 𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

, 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

should be within the power limitations 

of the EV and the EV charger 𝑝𝑛,𝑗
𝐸𝑉𝑟 as shown in Equation (23)-(26) . From the EV charger 

perspective, the regulation power offered must be within the power rating of the grid 

connection and the SOC of the EV battery (like (12)-(13))). This is summarized in equations 

below. While asymmetric reserve offers are assumed here (𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

≠ 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

), symmetric reserves 

can be achieved by including 𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

= 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

 to the constraints. 
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𝑝𝑛,𝑗,𝑡
𝑟(𝑢𝑝)

≤ 𝑝𝑛,𝑗,𝑡
𝑒+ /𝜂𝑛,𝑗

𝑐ℎ ∀ 𝑛, 𝑗, 𝑡 (23)

𝑝𝑛,𝑗,𝑡
𝑒+ + 𝑝𝑛,𝑗,𝑡

𝑟(𝑑𝑛)
𝜂𝑛,𝑗
𝑐ℎ ≤ 𝑝𝑛,𝑗

𝐸𝑉𝑟 ∀ 𝑛, 𝑗, [𝑇𝑛,𝑗
𝑎 ;𝑇𝑛,𝑗

𝑑 ] (24)

𝑝𝑛,𝑗,𝑡
𝑒+ + 𝑝𝑛,𝑗,𝑡

𝑟(𝑑𝑛)
𝜂𝑛,𝑗
𝑐ℎ ≤

𝑝𝑛,𝑗
𝑚𝑎𝑥 − 𝑝𝑛,𝑗

𝐶𝐶0

𝑆𝑛,𝑗
𝐶𝑉 ∗ 𝑆𝑛,𝑗,𝑡 + 𝑝𝑛,𝑗

𝐶𝐶0
∀ 𝑛, 𝑗, 𝑡 ∈ [𝑇𝑛,𝑗

𝑎 ;𝑇𝑛,𝑗
𝑑 ] & 𝑆𝑛,𝑗,𝑡

≤ 𝑆𝑛,𝑗
𝐶𝑉 (25)

𝑝𝑛,𝑗,𝑡
𝑒+ + 𝑝𝑛,𝑗,𝑡

𝑟(𝑑𝑛)
𝜂𝑛,𝑗
𝑐ℎ ≤

𝑝𝑛,𝑗
𝑚𝑎𝑥

(1 − 𝑆𝑛,𝑗
𝐶𝑉)

(1 − 𝑆𝑛,𝑗,𝑡)
∀ 𝑛, 𝑗, 𝑡 ∈ [𝑇𝑛,𝑗

𝑎 ;𝑇𝑛,𝑗
𝑑 ] & 𝑆𝑛,𝑗,𝑡

> 𝑆𝑗,𝑛
𝐶𝑉 (26)

∑
𝑝𝑛,𝑗,𝑡
𝑒+

𝜂𝑛,𝑗
𝑐ℎ

𝑗=𝐽

𝑗=1
+ 𝑝𝑛,𝑡

𝑙𝑜𝑐𝑎𝑙 − 𝑝𝑛,𝑡
𝑃𝑉 = 𝑝𝑛,𝑡

𝑑𝑖𝑓𝑓
= 𝑝𝑛,𝑡

𝑔(𝑖𝑚𝑝)
− 𝑝𝑛,𝑡

𝑔(𝑒𝑥𝑝)
∀ 𝑛, 𝑗, 𝑡 (27)

𝑝𝑛,𝑡
𝑔(𝑖𝑚𝑝)

= {𝑝𝑛,𝑡
𝑑𝑖𝑓𝑓

|𝑝𝑛,𝑡
𝑑𝑖𝑓𝑓

> 0} ∀ 𝑛, 𝑗, 𝑡 (28)

𝑝𝑛,𝑡
𝑔(𝑒𝑥𝑝)

= −1 ∗ {𝑝𝑛,𝑡
𝑑𝑖𝑓𝑓

|𝑝𝑛,𝑡
𝑑𝑖𝑓𝑓

< 0} ∀ 𝑛, 𝑗, 𝑡 (29)

∑ (
𝑝𝑛,𝑗,𝑡
𝑒+

𝜂𝑛,𝑗
𝑐ℎ

+ 𝑝𝑛,𝑗,𝑡
𝑟(𝑑𝑛)

)
𝑗=𝐽

𝑗=1
+ 𝑝𝑛,𝑡

𝑙𝑜𝑐𝑎𝑙 − 𝑝𝑛,𝑡
𝑃𝑉 ≤ 𝑝𝑛,𝑡

𝐺+ ∀ 𝑛, 𝑗, 𝑡 (30)

𝑝𝑛,𝑡
𝑃𝑉 − ∑ (

𝑝𝑛,𝑗,𝑡
𝑒+

𝜂𝑛,𝑗
𝑐ℎ − 𝑝𝑛,𝑗,𝑡

𝑟(𝑢𝑝)
)

𝑗=𝐽

𝑗=1
− 𝑝𝑛,𝑡

𝑙𝑜𝑐𝑎𝑙 ≤ 𝑝𝑛,𝑡
𝐺− ∀ 𝑛, 𝑗, 𝑡 (31)

Finally, 𝑝𝑛,𝑡
𝑔(𝑖𝑚𝑝)

, 𝑝𝑛,𝑡
𝑔(𝑒𝑥𝑝)

 should be within the distribution network capacity 𝑝𝑛,𝑡
𝐺+, 𝑝𝑛,𝑡

𝐺− as shown in 

(32)-(33). 𝑝𝑛,𝑡
𝐺+, 𝑝𝑛,𝑡

𝐺− are used as a thermal proxy for all potential limitations in the distribution 

network including voltage limits, line limits and transformer capacity. The values can come 

from the distribution system operator (DSO), ISO or ESco based on loading and voltage in the 

network and can be set at every time step in the receding horizon implementation. 

𝑝𝑛,𝑡
𝑔(𝑖𝑚𝑝)

≤ 𝑝𝑛,𝑡
𝐺+ ∀ 𝑛, 𝑡 (32)

𝑝𝑛,𝑡
𝑔(𝑒𝑥𝑝)

≤ 𝑝𝑛,𝑡
𝐺− ∀ 𝑛, 𝑡 (33)
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4. Algorithm Implementation considerations   

In this section, the practical aspects of implementing this optimization are analysed.  

4.1 Adaptability  

It must be kept in mind that even though wholesale DAM prices and small EV fleet have been 

used in this study, the formulation is generic to be used with large EV fleet, real-time market 

(RTM) and retail electricity prices as well. The parameters listed in the nomenclature section 

can be adapted for different markets, PV, EV types and to different smart charging scenarios 

as highlighted by the six case studies done for Austin.   

4.2 Capital cost and sharing of benefits  

The capital cost of building the proposed EV-PV integrated charging facility will be cheaper 

than a non-integrated system due to: 

 The use of rolling horizon implementation as opposed to stochastic optimization to handle 

forecasting errors and uncertainties simplifies the formulation and reduces the 

computational complexity; hence less powerful and cheaper hardware can be used. 

 The integrated scheduling of EV-PV--regulation reduces the net costs on an average by 

158%, and this could provide a revenue stream to recover the capital cost [13].  

  The EV-PV car park has several players involved namely the owner of PV and parking area, 

the ESCo, the ISO EV user and in a general scenario, the charging station operator (CSO), e-

mobility service provider (eMSP) and the DSO. The capital investment of the EV-PV charging 

facility and the benefit of the net cost reduction will ultimately have to be shared amongst all 

these parties. This will be dependent on the contractual business agreement between the 

parties.  

4.3 Scalability 

Similar to any MIP problem, the problem size will grow with the number of EV. At the same 

time, different parking locations are decoupled by their EV, PV and distribution constraints 

and hence the model dimension is naturally limited to the size of a single parking lot, about 5 

to 1000 EVs. Thus, the MIP's dimensionality is limited to problem sizes that are tractable by the 

current technology and therefore fairly scalable. Further, the receding horizon 

implementation makes the problem more scalable in terms of computational complexity 

when compared to stochastic optimization.  

Stochastic optimization is an alternative to the receding horizon approach. But it was not 

considered here for two reasons. First, the given problem has a lot of stochastic variables, 

making it computationally intensive and hence less scalable. This is especially a problem as 

the number of EV grows to above 50 in a parking lot. The MIP formulation with receding 

horizon approach makes it computationally easier. Second, stochastic optimization requires 

the generation of probabilistic data for all inputs and creating different scenarios for PV, EV, 

and market. Due to limited EV penetration, there is insufficient data now on EV and EV user 

patterns creating lots of dimensions of uncertainty. If such limited data is used as input, it is 

difficult to get reliable and useful results. 
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4.4 Interaction with de-regulated energy markets  

With up to 1000 EVs and 10kW EV charger, the total car park is handling 10MW power at 

maximum. This is small in relation to the power scales in the energy market. Hence, no 

perturbations will be observed on the market prices and no feedback on prices would be 

required for this system. At the same time, the net car park power can be occasionally lower 

than the minimum bid required by ISOs to participate in regulation services (for example, 

0.1MW for PJM, 0.1MW for ERCOT and typically 1MW in other ISOs) It is expected that ISOs 

around the world would lower the minimum bid requirements in the future to allow EVs to 

participate in ancillary services.  
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5. Implementation of Smart Charging 2.0 algorithm 

To eliminate implementation effects and enable an implementation independent analysis of 

the presented smart charging algorithm, the implementation of the optimization algorithm 

was done at AIT and TU Delft independently using the description of the algorithm provided 

by TU Delft. 

5.1 TU Delft implementation specifics 

System implementation of the algorithm in distribution grid 

The pre-described algorithm is on node level and it is expected that there is a central entity 

who is responsible for collecting the congestion information of the whole grid. This central 

entity will then give a limit of how much power can each node exchange with the grid to 

each node accordingly, as shown in Figure 5. Since the function of central coordinator is out 

of scope of this project, a very simple rule based central coordination is implemented for 

demonstration. 
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Figure 5 Schematic of the system implementation 

This simple central coordination does not have real-time congestion detection function, it 

only evenly distributes a pre-set grid limit value to all the nodes where there is EV connecting. 

Take the grid import limit for each node as an example. This pre-set grid limit is the total 

allowed power for all EV charging in the whole grid and it is equally shared to all EV-

connecting nodes depends on the number of connecting EVs at that moment. 

𝑝𝑚,𝑡
𝐺+ =

𝑃𝑙𝑖𝑚

∑ 𝐽𝑛,𝑡
𝑐𝑁

𝑛=1

∗ 𝐽𝑚,𝑡
𝑐 (34) 

The import power limit 𝑝𝑚,𝑡
𝐺+ of node 𝑚 at time 𝑡 is calculated in this way: the pre-set grid limit 

𝑃𝑙𝑖𝑚 divided by the total number of connecting EVs ∑ 𝐽𝑛,𝑡
𝑐𝑁

𝑛=1  at time t, then multiply with the 

number of connecting EVs 𝐽𝑚,𝑡
𝑐  at node m, as shown in equation (34). The schematic of this 

central coordination is presented in Figure 6. The uncontrolled charging results of Dutch grids 

(which can be found in deliverable 1.2) show no excessive exporting power problem at all, 

thus the export power limit is not specifically set for the smart charging simulations. 
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Figure 6 Simple rule based central coordination 

In the simulation, the transformer capacity is selected as the limit for sum of EV charging 

power in the whole grid, which is 400kW for each grid. The results with a tighter grid limitation 

are also presented and compared. 

Structure and time scale of the distribution algorithm 

The algorithm consists of a simulator and the MIP optimisation, and the formulation of the MIP 

optimisation is explained in the previous sections. The simulator is to mimic the real application 

environment, to adjust the system parameters and to execute the MIP optimisation. The 

function of this simulator includes analysing both the input, output data, set the moving 

horizon T, and then trigger the MIP optimisation. There are several rounds of the MIP 

optimisation from the beginning until the end of the whole optimisation duration. The whole 

optimisation duration originally refers to the one winter or one summer week defined in the 

scenario definition document. However, the optimisation duration in this algorithm is not 

limited by this period length that it can be set from one day to as many days if there is 

sufficient input data. The structure of the algorithm is plotted in Figure 7, and the time scale 

concept of the algorithm is shown in Figure 8. 
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Figure 7: Structure schematic of the SCv2.0 implementation with YUD 

Figure 8 Time scale schematic of the OSCD smart charging algorithm 

The MIP optimisation is triggered by certain events or with fixed time cycle, the 

implementation of SCv2.0 in OSCD project takes the new coming cars as the only trigger of 

the optimisation. Which means whenever there are new coming cars, the algorithm will reset 

the horizon and then run the MIP optimisation. 

Moving and flexible receding horizon 

Assume at node 𝑛 there is a charging park equipped with four chargers ( J = 4 ) with the 

algorithm is operating as shown in Figure 19. In this figure, each coordinate represents one 

charger; each block represents a car. In each coordinate, the X-axis represents the parking 

time of each car and the Y-axis shows the connectivity status of each car.  
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Figure 9 Illustration of the optimisation horizon determination 

The algorithm detects if there is any new arrival/departure car or existing connected cars at 

every time step. At an arbitrary time 𝑡𝑖, there is a new car (Chr1-EV2) arrives at charger 1 while 

charger 2 and charger 4 already have car connected with separately, and the charger 3 is 

empty. The algorithm identifies all EVs from the charger’s perspective. That is to say, even if 

there are only three cars connected at time 𝑡𝑖, J still equals to 4, but the parameters of each j 

is different. For example, at j = 3, which is the empty charger 3, all of the EV related 

parameters are either empty or equal to the default value. The algorithm then compares the 

departure time of cars connected to all four chargers (including one charger with an empty 

value) and select the latest departure time  𝑇𝑚𝑎𝑥
𝑑 = 𝑀𝑎𝑥{𝑇𝑗

𝑑|𝑗 ∈ 𝐽}. The optimisation horizon 𝑇𝑖

at time 𝑡𝑖 is then determined as 𝑇𝑖 =  𝑇𝑚𝑎𝑥
𝑑 − 𝑡𝑖 . 

Parameter updates and results output 

The new arrival car triggers one new round of MIP optimisation, and what has happened in 

the past will not be included in the optimisation of the future. Thus the parameters of the 

connecting cars will be divided into “the past”(part 1 in Figure 19) and “the future” (part 2 in 

Figure 19) two parts and updated for the new round of optimisation. For instance, when car 

Chr1-EV2 arrives at time 𝑡𝑖 , the parameters like arrival time, energy demand, SOC of car 

Chr2-EV1 and Chr4-EV1 need to be updated. The “future” part including the remaining 

parking time, remaining energy demand will be added into the new round of optimisation. 

The “past” part including the charged energy, the SOC will be stored temporarily and 

combined with the output data from MIP optimisation after the new round finished or when 

the car is leaving. 
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Figure 10 Schematic of the update of the output data 

When this new round of MIP optimisation finished, its results will overwrite the output of 

previous optimisation rounds if there is overlap of horizon from time 𝑡𝑖 to 𝑡𝑖 + 𝑇𝑖. The schematic 

of the update of the output data is shown in Figure 23, and the final output data is 

highlighted with red lines. It is assumed that the PV prediction and load prediction have 100% 

accuracy, and the algorithm only works on the EV charging process in this first draft version of 

algorithm. Therefore, the algorithm does not work when there is no EV connected to the 

charger and thus the output of the optimisation will be the system default value, as the gap 

before “Trigger 5” plotted in Figure 23. 

Assume the user of the algorithm is CSO, the CSO can set the algorithm start/end time 

𝑡𝑠𝑡𝑎𝑟𝑡/𝑡𝑒𝑛𝑑, which is when the algorithm is switched on/off. The timestep ∆𝑇, which is the data 

resolution, can also be set by the CSO.  

Simulation environment and parameter setups 

For smart charging simulation, the platforms applied are Python and DIgSILENT PowerFacotry, 

and the MILP solver is GUROBI. The duration of the whole simulation is 4 days with 5 minutes 

resolution. The input data for PV, local load and grid models are the same as described in 

scenario definition and uncontrolled simulation. The price signal which is implemented is Day 

Ahead Market price (DAM) for the Netherland from year 2018. The DAM market price for both 

selling and buying are the same, however, in order to distinguish the difference between the 

energy being sold and purchased, also to include the losses during grid power Import and 

export, we set the sell price for electricity as 90% of the DAM buying price.  

The implementation of a detailed regulation service procedure is also out of the scope of 

project, thus a simple version of implementation for demonstration is implemented in the 

simulation. It is assumed that the regulation service price the symmetrical, but the service 

offer can be asymmetrical, and the offer can be updated every 5 minutes.  

Both DAM and FCR price are obtained from entsoe platform 

(https://transparency.entsoe.eu/) and the price of 4 winter days is shown in Figure 11. 
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Figure 11 Sample DAM and FCR price data or Netherland in Winter 

5.2 AIT implementation specifics 

AIT specific assumptions 

For the implementation AIT used the mathematical programming framework JuMP (Dunning, 

Huchette, & Lubin, 2017). The open source MILP (mixed integer linear programming) solver 

CBC (johnjforrest, et al., 2020) was used as a solver. 

The prices that were used as input for the optimization problem were historical intraday prices 

from the EPEX spot market for the year 2018. 

To keep the smart charging implementation within the grid limits (ie. Voltage minimum, line 

loading and transformer loading) an iterative process was implemented. Within the control 

loop a preliminary load flow calculation is executed with the previously determined maximum 

charging power for each charger. If one the implemented limits is exceeded, all involved 

chargers are sent new limits for charging power, and a new optimization process is started for 

these chargers. With the new power limits, another load flow calculation is done, this process 

is done iteratively until no limit transgressions were found anymore. For line and voltage limit 

transgressions, at first the reduction was done only for the affected feeder, if that was not 

able to fix the limit transgressions, charging for all chargers in the whole grid was reduced. For 

transformer loading transgressions all charging in the whole grid was reduced from the start. 
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Figure 12: Exemplary depiction of central grid resource management mechanism 

As for the simple smart charging algorithms, during the simulation with the smart charging 

algorithm the maximum reduction of charging current, was to reduce the charging to the 

minimal charging current that is defined by IEC 61851 as 6A. (International Electrotechnical 

Commission, 2017). 

No interruption of charging processes was possible due to overstepped limits. TThe limits that 

were chosen for the central grid capacity management are shown in the following table. 

Minimum voltage Maximum line loading Transformer loading 

0.95 per unit 90% of rated current 90% of rated power 

The AIT implementation of the smart charging algorithm did not include the balancing 

energy consideration from the SCv2.0 algorithm description, as it proved too time consuming 

to implement a realistic balancing energy market, and no sufficient data was available to do 

so. 

All results presented in the following sections have been conducted for winter scenarios. The 

plots of the results for the summer simulations can be found in the appendix. 

AIT specific simulation setup 

The following graphics have already been presented for the uncontrolled charging scenario 

in deliverable D2.1 and are shown here to reintroduce some of the AIT specific simulation 

environment characteristics. As these plots are per charging algorithm, presenting them for 

every simulated scenario and each algorithm individually would require too much space. the 

plots in later sections show a statistical analysis of the results of several simulations.  
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Figure 13:  Phase distribution of charging power from all chargers throughout the grid and simulation for 
different EV penetration scenarios for Austrian Grid 8, winter 

Figure 13 shows an exemplary distribution of charging power on different phases as well as 

the overall power for one time based simulation. This shows the asymmetry between the 3 

phases that occurs because of different chargers as well as cars using different phase 

configurations. Even though the peaks match up, there is a phase asymmetry of several kW 

throughout the grid. The effect seems to become less apparent at higher penetrations, which 

is to be suspected. Such asymmetries could prove to be problematic when a single phase of 

a grid is critical to begin with. 

Figure 14: Time based simulation results depicting grid KPIs for smart charging Austrian Grid 8, winter 

Figure 14 shows an exemplary plot of time based grid loading. The assumption of letting every 

EV charge whenever it arrives at a location with an EV charger leads to there being a large 

amount of charging events throughout the simulation, but few charging events for short 

periods of time. This can be seen by the fluctuating curves depicting grid performance 

indicators. 
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Figure 15: Time based simulation results showing accumulated state of charge of all vehicles within the 
simulation, Austrian Grid 8, winter 

Figure 15 shows the accumulated state of charge of all simulated EVs over the simulated 

time. 

During the day the energy content of EVs declines when they are being used for trips. In the 

afternoon and in the night EVs are mostly connected and the collective state of charge 

increases again. An interesting effect that can be seen on this graph is the fact that not all 

vehicles are recharged by the end of the simulation. This is mostly the case because the 

vehicles have travelled to a location where they are not able to charge. As the mobility data 

is generated through statistical evaluation of a mobility survey, this effect should reflect 

situations in real distribution grids well.  
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6. Simulation Results - Netherlands  

To evaluate the multi-actor-optimised smart charging algorithm the same grids are used to 

evaluate the effects of uncontrolled charging and simple smart charging as in D2.1 and D2.2 

respectively. 

Table 1 Dutch rural Grid parameters 

Grid type Rural Grid 1 Rural Grid 2 

Transformer capacity 400kVA 400kVA 

No. of loads 3 138 

Number of households 0 133 

Average line length[m] 22.837 7.908 

Longest feeder length 367.812 452.206 

Yearly energy demand [MWh] 97.954 486.782 

Table 2 Dutch suburban Grid Parameters 

Grid type Suburban 1 Suburban 2 

Transformer capacity 400kVA 400kVA 

No. of loads 480 266 

Number of households 475 266 

Average line length[m] 7.350 8.072 

Longest feeder length 566.034 546.630 

Yearly energy demand [MWh] 1394.143 800.796 

Table 3 Parameters for Simulated Urban Grids 

Grid type Urban Grid 1 Urban Grid 2 

Transformer capacity 400kVA 400kVA 

No. of loads 296 123 

Number of households 283 122 

Average line length[m] 4.441 10.252 

Longest feeder length 332.547 360.425 

Yearly energy demand [MWh] 1680.224 261.036 

6.1 Grid performance 

In this section, for different scenarios the results of uncontrolled charging are compared with 

those of three simple smart charging techniques (price, based, average rate. Voltage based) 

and with the proposed smart charging algorithm. The observed changes in transformer 

loading, line loading and nodal voltages are compared.   
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Accumulative results 

Figure 16 shows the box plot of transformer loading, maximum loading, and minimal node 

voltage at 80% EV penetration during Winter. he results of uncontrolled charging are 

compared with those of three simple smart charging techniques (price, based, average rate. 

Voltage based) and with the proposed smart charging algorithm.  

 Grid loading results of SCv2.0 are more compact compared to other methods and the 

medium values are also better, especially for heavily loaded grids e.g. suburban grids. This 

shows SCv2.0 does improve the grid performance. 

 Only two suburban grids are overloaded with peak values, the other grids have no problem 

at all. 

 A short moment of e.g. transformer loading breach is not a problem, so this plot does not 

necessarily point to a negative sign for the smart charging. 

 It is important to recognize that SCv2.0 does not always decrease the grid peak loadings 

or prevent grid overloading. This is because, due to the distributed nature of the algorithms’ 

implementation, it heavily relies on the grid import/export limitations as set by the grid 

coordinator. This is hence a key control variable that strongly influences the charging profile 

and meeting the EV energy demand.  

 To improve the algorithm’s performance, it is important to have a suitable central 

coordination entity to set the grid limits for import and export. The coordination entity needs 

to look at all the nodes with and without EVs. But also, at current and expected future 

loading patterns.  
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Figure 16 Box plot of transformer loading, maximum loading and minimal node voltage at 80% EV 
penetration in Winter 

Time based plots 

Figure 17, Figure 18, Figure 20 shows the time-based Grid transformer loading, maximum line 

loading amongst all lines and minimum nodal voltage amongst all nodes for the case of 80% 

EV penetration in Winter. We can observe that 
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 The SCv2.0 helps in reducing the peak loading compared to other methods, 

especially for the heavily loaded grid suburban grid 1. Both the overloading duration 

and magnitude are decreased with SCv2.0. 

 Most of the EV charging power is shifted to the “free capacity” time window (or valley 

window) where the base load is low and the grid has more free capacity as seen in 

Figure 17. This concept is further shown in Figure 19 where we define the free capacity 

as: the available grid capacity apart from existing base load; 

 It is preferable to charge EVs in this way because it does not add too much burden 

unlike the other methods which charging power are add on top of existing peaks; 

 This is further elaborated in Figure 21 which shows the percentage of EV charging 

energy that falls into free capacity windows. The plot proves indeed the SCv2.0 helps 

use the grid capacity in the most efficient ways; 

 If eventually the free capacity is used up, then the grid needs to be reinforced by 

increasing the capacity of transformers and lines.  

Figure 17 Grid transformer loading versus time at 80% EV penetration in Winter 
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Figure 18 Loading of maximum loaded line of the grid versus time at 80% EV penetration in Winter 
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Figure 19 Schematic of grid free capacity for EV charging 
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Figure 20 Minimal node voltage of the grid versus time at 80% EV penetration in Winter 
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Figure 21 Percentage of EV charging energy that falls into free capacity windows 

6.2 Charging satisfaction and cost 

This paragraph compares the results between the charging techniques adjusted for 

normalised charging costs, charging accomplishments at the pre-set grid charging limit 

(400kW), as described in Section 5.1  

Figure 22 Adjusted normalised charging cost comparison for EV 80% penetration in Winter 

Figure 22 compares the adjusted normalised charging costs of the different charging 

techniques for all the charging sessions. For each charging event, the cost of different simple 

and smart charging methods is normalised with the uncontrolled charging costs and then 

corrected for the charge satisfaction using the formula (35) below: 
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𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 =
𝐶𝑆𝐶𝐶/𝐶𝑢𝑛𝑐𝑡𝑟𝑙

𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑑/𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡
(35) 

Where 𝐶𝑆𝐶𝐶  is the charging cost of cost of different simple and smart charging methods, 𝐶𝑢𝑛𝑐𝑡𝑟𝑙
is the cost of uncontrolled charging, 𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑑 the actual charged energy and 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is the 

charging energy demand. 

The figure shows a significant decrease in charging costs for the SCv2.0.   

Figure 23 Level of charging accomplishment comparison for EV 80% penetration in Winter 

The charging level accomplishments are greatly improved by the SCv2.0 both in number of 

events and fulfilled charge requests, for all grids except for suburban grid as shown in Figure 

23. This is because in this specific situation where grid overloading is the major problem for 

suburban grid 1, the priority of the algorithm is to mitigate the grid congestion rather than to 

meet the charge request.  
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This also explains why some of the other grids have higher peak loadings with SCv2.0 in Figure 

17, Figure 18 and Figure 20. As in these cases the algorithm prioritises EV charge 

accomplishments within the grid capacity limitations. 

 SCv2.0 improves both charging accomplishment regarding both the number of 

events and requested energy for all the other grids except suburban grid 1. 

 That is because suburban 1 has great overloading issue thus the priority of the 

algorithm is to prevent grid congest rather than fulfil all the charging requests 

 As for other grids, this results also explains why some other grids have higher grid peak 

loading with SCv2.0. That is because the algorithm tries to charge all the EV as much 

as possible within available grid capacity limitations. 

6.3 Influence of central coordination alterations 

The current central coordination method is very basic. It evenly distributes the pre-set grid EV 

charging limit (in this case the transformer capacity is used to set the value) to the EV 

connected nodes dynamically based on the number of connecting EVs. This method does 

not incorporate the base load of the whole grid, nor does it consider the EV charging 

demand variation and the other grid performance indices (line loading, node voltage). The 

only value that can be altered to change the power limit to each node is the pre-set grid EV-

charge limit. As a result, it is important to see how the variation of pre-set grid limits of the 

central coordination influences the outcome of SCv2.0.  

In this section, the pre-set grid limit is tightened from 400 kW to 300 kW on the grids that show 

congestions problems (i.e., rural 2, suburban 1 and suburban 2). 
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Grid performance with tightened pre-set grid limit 

Figure 24 Grid performance including two grid limitations for SCv2.0 

Grid performance is significantly improved by SCv2.0 in grids that have a lot of congestions, 

as shown by the Figure 24. Short moments of transformer or line overloading will not lead to 

grid disruptions.  

Figure 25, Figure 26 and Figure 27 show the time-based grid transformer loading, maximum 

line loading and minimum node voltage for 80% EV penetration in Winter as in paragraph 

Fehler! Textmarke nicht definiert. with the addition of the reduced grid EV-charge limit. This 

shows that increasing the grid EV-charge limit improves performance in grids that have 

congestions problems.  



40 

Figure 25 Grid transformer loading versus time at 80% EV penetration in Winter with reduced grid EV-
charge limit 
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Figure 26 Loading of maximum loaded line of the grid versus time at 80% EV penetration in Winter with  
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Figure 27 Minimal node voltage of the grid versus time at 80% EV penetration in Winter with reduced grid 
EV-charge limit 
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Figure 28 Level of charging accomplishment comparison for EV 80% penetration in Winter with reduced 
grid EV-charge limit 

The power and energy plots show that heavy congested grids (i.e., suburban grid 1) can 

highly benefit from tightened grid EV-charge limits. Other less congested grids advantage less 

in decreasing congestion and could even unnecessarily sacrifice EV-charge demand, this is 

explained in the next section.  

Charging cost and satisfaction with tightened pre-set grid limit 

Figure 29 Adjusted normalised charging costs SCv2.0 with grid EV-charge limitation 
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Figure 30 Level of charging accomplishment comparison for EV 80% penetration in Winter with different 
grid EV-charge limitation 

As shown in Figure 29 tightening the grid EV-charge limitation does not influence the cost at 

all. It does lead to higher unfinished charging events as seen in Figure 30, especially for rural 2 

and suburban 2. The grid performances are not significantly better, but less cars are charged 

to satisfaction. Because the EV-charge limitation is evenly distributed between connected 

nodes, some charge request might not be met while other nodes have unused capacity. 

Dynamic redistribution of available capacity between connected nodes, based on demand, 

would solve this.  

This means that for each grid type the grid congestion level needs to be evaluated before 

setting a grid EV-charge limitation as there is a trade-off between grid performance and EV 

user satisfaction.  
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7. Simulation Results - Austria 

To evaluate the multi-actor-optimised smart charging algorithm the same grids are used to 

evaluate the effects of uncontrolled charging and simple smart charging as in D2.1 and D2.2 

respectively. 

7.1 Rural Grids 

For the Austrian simulation setup 2 Rural Grids were investigated. The key parameters 

identifying the grids are shown in the following table. 

Rural Austrian Grids 

Grid Austrian Grid 1 Austrian Grid 2 

Problems expected yes no 

Annual electricity demand 1121 MWh 384 MWh 

Transformer capacity 1*630 kVA 1*250 kVA 

Number of nodes 154 62 

Number of households 280 77 

Average line length 51 m 49 m 

Total length longest feeder 1134 m 1312 m 

Number of nodes equipped with PV 23 2 

Total installed PV power  148 kVA 12 kVA 

Figure 31 and Figure 32 show the simulation results with regards to minimal voltage reached 

throughout the simulations for the Austrian Grid 1 and 2 respectively. It can be seen that the 

smart charging algorithm “SCv2.0” shows the best results together with the average rate 

charging. 

Figure 33 and Figure 34 shows the maximum line loading throughout the simulations with 

different control algorithms for the EV chargers. No critical situations were reached, but the 

smart charging algorithm seems to be performing the best with regards to line loading. 

Figure 35 and Figure 36 show the results with regards to transformer loading for the Rural 

Austrian Grids 1 and 2 respectively. No critical situations can be highlighted. All charging 

control schemes performed well. 

Figure 37 and Figure 38 show the average price in € per kWh per charging event for each of 

the simulations with Austrian Grid 1 and 2 respectively. There is not a lot of difference 

between the prices that can be achieved using the different algorithms if access to the 

intraday market is available. If the prices were compared to standard fixed tariff energy 

prices, 18.5486 €c per kWh including taxes and grid tariffs (Energie, 2020). In comparison with 

that a considerable advantage can be achieved with smart charging algorithms. This 

requires access to these dynamic markets, which will probably only be possible with a 

centrally controlled smart charging algorithm in place. 

Figure 39 and Figure 40 show the comparison of the average state of charge at the end of 

charging events, where an advantage of the smart charging algorithm over the average 

rate algorithm can clearly be seen. 
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Figure 31: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 1, winter. 

Figure 32: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 2, winter. 
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Figure 33: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 1, winter. 

Figure 34: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 1, winter. 
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Figure 35: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 1, winter. 

Figure 36: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 2, winter. 
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Figure 37: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 1, winter. 

Figure 38: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 2, winter. 
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Figure 39: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 1, winter. 

Figure 40: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 2, winter.
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7.2 Suburban Grids 

For the investigation of suburban grids in Austria 4 grids were implemented in the co-

simulation environment. The key parameters for the different grids are summarised in the 

following table. 

Suburban Austrian Grids 

Grid Austrian Grid 3 Austrian Grid 4 Austrian Grid 8 Austrian Grid 9

Problems expected yes no - - 

Annual electricity 

demand 

1651 MWh 1213 MWh 760 MWh 1222 MWh 

Transformer capacity 2*400 kVA 1*400+1*630 kVA 1*400 kVA 1*400 kVA 

Number of nodes 205 51 147 141 

Number of 

households 

410 321 345 319 

Average line length 37 m 34 m 22 m 31 m 

Total length longest 

feeder 

590 m 280 m 457 m 678 m 

Number of nodes 

equipped with PV 

14 3 19 7 

Total installed PV 

power  

107 kVA 13 kVA 111 kVA 45 kVA 

Figure 41 to Figure 44 show the minimum voltages observed throughout the simulations for the 

different simple smart charging schemes and for different EV penetration scenarios. For all the 

grids the minimum observed voltage gets lower with higher EV penetration.  

The multi-actor optimized smart charging algorithm performed equally good as the average 

rate charging algorithm, because at critical voltage situations a reduction of charging rate is 

implemented as described on Page 26. In none of the charging algorithms an interruption of 

the charging process is considered, the maximum charging reduction is to the minimum 

allowed charging power of 6A per phase as introduced in the IEC 61851 conductive 

charging standard (International Electrotechnical Commission, 2017). The information from 

the DSO proved to be correct for Austrian Grid 3 & 4, the problems that were observed with 

respect to voltage levels were far more severe for Austrian Grid 4 where the DSO expects 

problems with further integration of EVs in the future. 

In Figure 44 for the EV system penetration of 50 percent a lower minimum voltage is reached 

than for the EV system penetration of 80 percent. This occurs during the price based and 

uncontrolled charging control. While this might seem odd at first, the behaviour is specific to 

the way the simulation was set up and can easily be explained. The grid as well as the 

chargers were simulated with 3 phases. Some of the vehicles however, do not charge using 
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all 3 phases. Some vehicles charge using only 1 phase or 2 phases. To accommodate for this 

fact at chargers that have several slots, like semi-public chargers in multi home car parks or 

public charging stations, each charging slot was assigned a particular single phase and 2 

phase configurations (using for instance phase 1 for all single-phase charging events or using 

phase 2 and 3 for all 2 phase charging events) for all simulations. Now with higher penetration 

of EVs a situation can occur where a charging slot is already occupied when a vehicle arrives 

resulting in an arriving vehicle to charge in a different slot for a higher EV penetration. This can 

result in a beneficial voltage effect if an already affected phase is not used because of an 

already occupied charging slot. This behaviour is not a mistake in the simulation setup, but 

rather a feature of it, showing that it can highlight problems occurring down to node level for 

a very realistic setup. 

Figure 41: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 3, winter. 

Figure 42: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 4, winter. 
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Figure 43: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 8, winter. 

Figure 44: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 9, winter. 
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Figure 45 to Figure 48 show the maximum line loading throughout the simulations for the 

suburban Austrian Grids. There is some improvement for most of the simple smart charging 

algorithms, but the improvement is rather small in most cases. As the maximum line loading 

already seems high in the cases of Austrian Grid 3, 8 and 9, even without any charging EVs, it 

is reasonable to assume that there might be some bottlenecks in the grid infrastructure that 

will have to be reinforced in any case.  

The smart charging algorithm SCv2.0 provided the best results of all investigated charging 

schemes. It was the only algorithm that was able to reduce critical situations for almost all 

grids. Only for Austrian Grid 9 there were critical situations, but these occurred in the case 

without any vehicles as well and the algorithm was not able to mitigate this behaviour.  

Figure 45: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 3, winter. 

Figure 46: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 4, winter. 
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Figure 47: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 8, winter. 

Figure 48: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 9, winter. 
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Figure 49 to Figure 52 shows the transformer loading throughout the simulations for the 

suburban grids in Austria. For the transformer loading, the situation is similar to the situation for 

the maximum line loading. There is an increase in loading visible in higher EV penetration 

scenarios, but it is not as critical as node voltage levels. The average rate algorithm and the 

smart charging algorithm v2.0 offer the best results. For Austrian Grid 3, 4 and 9 the price-

based algorithm observes the second-best results, with the voltage-based algorithm fairing 

the worst. This seems surprising, because the price-based algorithm should lead to more EVs 

charging at the same time when prices are lower. The differences however are not huge and 

are probably down to several charging events being delayed due to low voltage levels in 

parts of the grid, resulting in higher EV charging load when more charging events are taking 

part simultaneously. 

Figure 49: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 3, winter. 

Figure 50: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 4, winter. 
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Figure 51: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 8, winter. 

Figure 52: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 9, winter. 
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Figure 53 to Figure 56 show the achieved charging even prices throughout all simulations 

using the suburban Austrian grids. It can be seen that the achieved prices are mostly very 

similar, but considering that no other algorithm than the smart charging algorithm could in 

reality have access to the prices at an intraday market that were used to accumulate the 

price results presented here, there is an inherent advantage of the smart charging algorithm 

over the simple smart charging algorithms, being able to achieve better energy prices for the 

charging EVs. 

Figure 53: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 3, winter. 

Figure 54: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 4, winter. 
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Figure 55: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 8, winter. 

Figure 56: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 9, winter. 
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Figure 57 to Figure 60 show the amount of completed charging events and the average state 

at the end of each charging event for all suburban Austrian grids. It can be seen that all 

smart charging schemes perform worse than uncontrolled charging. The worst performing in 

terms of state of charge is the average rate charging control followed by the SCv2.0 smart 

charging. Considering the very good performance of SCv2.0 with regards to grid 

performance indicators it probably performs best considering both grid parameters and 

quality of service measured by the average state of charge. 

Figure 57: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 3, winter.
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Figure 58: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 4, winter. 

Figure 59: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 8, winter. 
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Figure 60: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 9, winter. 
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7.3 Urban Grids 

For the investigation of urban grids in Austria 3 grids were used in the co-simulation setup. The 

key parameters for the different grids are summarised in the following table. 

Urban Austrian Grids 

Grid Austrian Grid 5 Austrian Grid 6 Austrian Grid 7 

Problems expected yes no - 

Annual electricity demand 1379 MWh 1532 MWh 1052 MWh 

Transformer capacity 2*630 kVA 2*630 kVA 1*400 kVA 

Number of nodes 96 38 178 

Number of households 451 344 274 

Average line length 27 m 27 m 31 m 

Total length longest feeder 491 m 314 m 431 m 

Number of nodes equipped 

with PV 

3 1 11 

Total installed PV power  10 kVA 30 kVA 50 kVA 

The observed minimum voltage throughout the respective grid are visualised in Figure 61 to 

Figure 63. For Austrian Grid 5, the minimum voltage was very similar for all charging methods 

and penetrations, with the smart charging algorithm and the average rate algorithm 

outperforming the other algorithms slightly. This could be accounted to the grid topology as 

well as the effect of the implemented 3 phase charger setup, described in the previous 

section. For the Urban grids, the voltage drop was smaller than for suburban and rural grids, 

this could be the result of the shorter average line lengths and shorter longest feeders relative 

to the suburban and rural grids. Overall the average rate and the smart charging algorithm 

version 2.0 proved to be the best control schemes. For smaller penetrations there is not a lot 

of difference between the different charging methods, but the differences become more 

apparent with higher EV penetrations. 
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Figure 61: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 5, winter. 

Figure 62: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 6, winter. 
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Figure 63: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 7, winter. 

The observed maximum line loadings throughout the simulations for Austrian Grid 5, 6 and 7 

are shown in Figure 64, Figure 65 and Figure 66 respectively. While some improvements over 

the uncontrolled charging scenario can be observed for Austrian Grid 5, for Austrian Grid 6 

there is virtually no difference in terms of line loading. For Austrian Grid 7 the loading is 

reduced substantially through all simple smart charging schemes as well as the smart 

charging scenario. 

Figure 64: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 5, winter. 
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Figure 65: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 6, winter. 

Figure 66: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms Austrian Grid 7, winter. 

Figure 67 to Figure 69 show the transformer loading results for the Urban Austrian Grid 

simulations. 

Like the line loading results, the results are not becoming a lot worse with increasing EV 

penetration. Therefor it can be concluded, that for the presented urban grids, transformer 

loading and line loading seem to be less critical grid related performance indicator. 
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Figure 67: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 5, winter. 

Figure 68: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 6, winter. 
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Figure 69: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms Austrian Grid 7, winter. 

Figure 70, Figure 71 and Figure 72 show the individual costs per charging event in € per kWh 

for all simulations conducted for Austrian Grid 5, 6 and 7 respectively. Like for the suburban 

and rural Austrian Grid simulations the prices seem to be very similar for all different smart 

charging schemes. Being able to buy energy through an aggregator at the intraday market 

will however provide a large improvement over standard energy procurement contracts as 

was explained in the previous sections. 

Figure 70: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 5, winter. 
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Figure 71: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 6, winter. 

Figure 72: Comparison of charging costs per charging event for all penetration scenarios and control 
algorithms Austrian Grid 7, winter. 
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Figure 73: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 5, winter. 

Figure 74: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 6, winter. 
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Figure 75: Comparison of completed charging events and average state of charge at the end of 
charging events for all penetration scenarios and control algorithms Austrian Grid 7, winter. 
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8. Simulation Results – Germany (AIT part) 

To study the effects of the smart charging algorithm on typical German grids 6 different grids 

were modelled, 3 by the Technical university of Delft and 3 by AIT. As well as for the Dutch 

and Austrian Grids the Grids are separated into 3 categories, rural, suburban and urban grids. 

8.1 Rural Grids 

For the investigation of rural grids in Germany, one grid was modelled by AIT. The key facts 

concerning the grids are shown in the following table. 

Table 4 Parameters of German rural grid with no expected problems 

Rural German Grids 

Grid German Grid 1 

Problems expected no 

Transformer capacity 250 kVA 

Annual electricity demand 42 MWh 

Number of nodes 52 

Number of households 12 

Average line length 10 m 

Figure 76 shows the minimum voltage throughout simulations for German Grid 1 with different 

charging controls implemented. The average rate charging scheme shows the best results, 

while none of the other charging controls ever reached a critical point throughout the 

simulations. 

Figure 76: Comparison of minimum voltage per simulation time step for all penetration scenarios and 
control algorithms German Grid 1, winter. 

The maximum line loading observed throughout simulations for different EV penetrations is 

visualised in Figure 77. As well as for the voltage level, the average rate charging shows the 
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least critical behaviour while no other control scheme results in any critical level throughout 

the simulations. 

Figure 77: Comparison of maximum line loading per simulation time step for all penetration scenarios 
and control algorithms German Grid 1, winter. 

In Figure 78 the results for the simulation for different EV penetrations with respect to 

transformer loading are shown. The average rate algorithm is also performing best here, while 

no critical situation can be seen at any time. 

Figure 78: Comparison of transformer loading per simulation time step for all penetration scenarios and 
control algorithms German Grid 1, winter. 


